Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Unscrambling the physics of out-of-time-order correlators

Quantitative tools for measuring the propagation of information through quantum many-body systems, originally developed to study quantum chaos, have recently found many new applications from black holes to disordered spin systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the growth of operators with time.

References

  1. Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).

    ADS  Google Scholar 

  2. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  Google Scholar 

  3. Peres, A. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  4. Jalabert, R. A. & Pastawski, H. M. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493 (2001).

    Article  ADS  Google Scholar 

  5. Gorin, T., Prosen, T., Seligman, T. H. & Žnidarič, M. Dynamics of Loschmidt echoes and delity decay. Phys. Rep. 435, 33–156 (2006).

    Article  ADS  Google Scholar 

  6. Rhim, W.-K., Pines, A. & Waugh, J. S. Time-reversal experiments in dipolar-coupled spin systems. Phys. Rev. B 3, 684–696 (1971).

    Article  ADS  Google Scholar 

  7. Zhang, S., Meier, B. H. & Ernst, R. R. Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149–2151 (1992).

    Article  ADS  Google Scholar 

  8. Levstein, P. R., Usaj, G. & Pastawski, H. M. Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998).

    Article  ADS  Google Scholar 

  9. Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. Yao, N. Y. et al. Interferometric approach to probing fast scrambling. Preprint at https://arxiv.org/abs/1607.01801 (2016).

  11. Zhu, G., Hafezi, M. & Grover, T. Measurement of many-body chaos using a quantum clock. Phys. Rev. A 94, 062329 (2016).

    Article  ADS  Google Scholar 

  12. Campisi, M. & Goold, J. Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017).

    Article  ADS  Google Scholar 

  13. Yunger Halpern, N. Jarzynski-like equality for the out-of-time-ordered correlator. Phys. Rev. A 95, 012120 (2017).

    Article  ADS  Google Scholar 

  14. Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

    Article  Google Scholar 

  15. Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).

    Google Scholar 

  16. Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).

    Article  ADS  Google Scholar 

  17. Meier, E. J., Ang’ong’a, J., An, F. A. & Gadway, B. Exploring quantum signatures of chaos on a Floquet synthetic lattice. Preprint at https://arxiv.org/abs/1705.06714 (2017).

  18. Roberts, D. A. & Swingle, B. Lieb-Robinson bound and the butterfly effect in quantum field theories. Phys. Rev. Lett. 117, 091602 (2016).

    Article  ADS  Google Scholar 

  19. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).

    Article  MathSciNet  Google Scholar 

  20. Kitaev, A. A simple model of quantum holography. KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).

  21. Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    Article  MathSciNet  Google Scholar 

  22. Sachdev, S. & Ye, J. Gapless spin-liquid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    Article  ADS  Google Scholar 

  23. Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev-Ye-Kitaev model. J. High Energy Phys. 2016, 1 (2016).

    Article  MathSciNet  Google Scholar 

  24. Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  25. Kukuljan, I., Grozdanov, S. & Prosen, T. Weak quantum chaos. Phys. Rev. B 96, 060301 (2017).

    Article  ADS  Google Scholar 

  26. Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).

    Article  MathSciNet  Google Scholar 

  27. Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 4 (2016).

    Article  MathSciNet  Google Scholar 

  28. Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).

    Article  MathSciNet  Google Scholar 

  29. Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden-Preskill protocol. Preprint at https://arxiv.org/abs/1710.03363 (2017).

  30. Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 151 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  31. Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    Article  ADS  Google Scholar 

  32. Serbyn, M., Papic, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

    Article  ADS  Google Scholar 

  33. Huang, Y., Zhang, Y.-L. & Chen, X. Out-of-time-ordered correlator in many-body localized systems. Ann. Phys. 529, 1600318 (2017).

    Article  Google Scholar 

  34. Fan, R., Zhang, P., Shen, H. & Zhai, H. Out-of-time-order correlation for many-body localization. Sci. Bull. 62, 707–711 (2017).

    Article  Google Scholar 

  35. Swingle, B. & Chowdhury, D. Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017).

    Article  ADS  Google Scholar 

  36. Chen, Y. Quantum logarithmic butterfly in many body localization. Preprint at https://arxiv.org/abs/1608.02765 (2016).

  37. Slagle, K., Bi, Z., You, Y.-Z. & Xu, C. Out-of-time-order correlation in marginal many-body localized systems. Phys. Rev. B 95, 165136 (2017).

    Article  ADS  Google Scholar 

  38. Yunger Halpern, N., Swingle, B. & Dressel, J. The quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A 97, 042105 (2018).

    Article  ADS  Google Scholar 

  39. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Swingle.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nature Phys 14, 988–990 (2018). https://doi.org/10.1038/s41567-018-0295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0295-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing