Quantitative tools for measuring the propagation of information through quantum many-body systems, originally developed to study quantum chaos, have recently found many new applications from black holes to disordered spin systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Out-of-time-order correlators and Lyapunov exponents in sparse SYK
Journal of High Energy Physics Open Access 16 November 2023
-
Energy dynamics, information and heat flow in quenched cooling and the crossover from quantum to classical thermodynamics
Journal of High Energy Physics Open Access 31 May 2023
-
Quantum wake dynamics in Heisenberg antiferromagnetic chains
Nature Communications Open Access 02 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).
Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).
Peres, A. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984).
Jalabert, R. A. & Pastawski, H. M. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493 (2001).
Gorin, T., Prosen, T., Seligman, T. H. & Žnidarič, M. Dynamics of Loschmidt echoes and delity decay. Phys. Rep. 435, 33–156 (2006).
Rhim, W.-K., Pines, A. & Waugh, J. S. Time-reversal experiments in dipolar-coupled spin systems. Phys. Rev. B 3, 684–696 (1971).
Zhang, S., Meier, B. H. & Ernst, R. R. Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149–2151 (1992).
Levstein, P. R., Usaj, G. & Pastawski, H. M. Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998).
Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).
Yao, N. Y. et al. Interferometric approach to probing fast scrambling. Preprint at https://arxiv.org/abs/1607.01801 (2016).
Zhu, G., Hafezi, M. & Grover, T. Measurement of many-body chaos using a quantum clock. Phys. Rev. A 94, 062329 (2016).
Campisi, M. & Goold, J. Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017).
Yunger Halpern, N. Jarzynski-like equality for the out-of-time-ordered correlator. Phys. Rev. A 95, 012120 (2017).
Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).
Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).
Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).
Meier, E. J., Ang’ong’a, J., An, F. A. & Gadway, B. Exploring quantum signatures of chaos on a Floquet synthetic lattice. Preprint at https://arxiv.org/abs/1705.06714 (2017).
Roberts, D. A. & Swingle, B. Lieb-Robinson bound and the butterfly effect in quantum field theories. Phys. Rev. Lett. 117, 091602 (2016).
Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).
Kitaev, A. A simple model of quantum holography. KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).
Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).
Sachdev, S. & Ye, J. Gapless spin-liquid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).
Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev-Ye-Kitaev model. J. High Energy Phys. 2016, 1 (2016).
Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).
Kukuljan, I., Grozdanov, S. & Prosen, T. Weak quantum chaos. Phys. Rev. B 96, 060301 (2017).
Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).
Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 4 (2016).
Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).
Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden-Preskill protocol. Preprint at https://arxiv.org/abs/1710.03363 (2017).
Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 151 (2017).
Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
Serbyn, M., Papic, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).
Huang, Y., Zhang, Y.-L. & Chen, X. Out-of-time-ordered correlator in many-body localized systems. Ann. Phys. 529, 1600318 (2017).
Fan, R., Zhang, P., Shen, H. & Zhai, H. Out-of-time-order correlation for many-body localization. Sci. Bull. 62, 707–711 (2017).
Swingle, B. & Chowdhury, D. Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017).
Chen, Y. Quantum logarithmic butterfly in many body localization. Preprint at https://arxiv.org/abs/1608.02765 (2016).
Slagle, K., Bi, Z., You, Y.-Z. & Xu, C. Out-of-time-order correlation in marginal many-body localized systems. Phys. Rev. B 95, 165136 (2017).
Yunger Halpern, N., Swingle, B. & Dressel, J. The quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A 97, 042105 (2018).
Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nature Phys 14, 988–990 (2018). https://doi.org/10.1038/s41567-018-0295-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0295-5
This article is cited by
-
Noncommuting conserved charges in quantum thermodynamics and beyond
Nature Reviews Physics (2023)
-
Energy dynamics, information and heat flow in quenched cooling and the crossover from quantum to classical thermodynamics
Journal of High Energy Physics (2023)
-
Out-of-time-order correlators and Lyapunov exponents in sparse SYK
Journal of High Energy Physics (2023)
-
Linear growth of quantum circuit complexity
Nature Physics (2022)
-
Probing quantum information propagation with out-of-time-ordered correlators
Nature Physics (2022)