Quantitative tools for measuring the propagation of information through quantum many-body systems, originally developed to study quantum chaos, have recently found many new applications from black holes to disordered spin systems.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.

References
- 1.
Larkin, A. & Ovchinnikov, Y. N. Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys. 28, 1200–1205 (1969).
- 2.
Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).
- 3.
Peres, A. Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984).
- 4.
Jalabert, R. A. & Pastawski, H. M. Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493 (2001).
- 5.
Gorin, T., Prosen, T., Seligman, T. H. & Žnidarič, M. Dynamics of Loschmidt echoes and delity decay. Phys. Rep. 435, 33–156 (2006).
- 6.
Rhim, W.-K., Pines, A. & Waugh, J. S. Time-reversal experiments in dipolar-coupled spin systems. Phys. Rev. B 3, 684–696 (1971).
- 7.
Zhang, S., Meier, B. H. & Ernst, R. R. Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149–2151 (1992).
- 8.
Levstein, P. R., Usaj, G. & Pastawski, H. M. Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998).
- 9.
Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).
- 10.
Yao, N. Y. et al. Interferometric approach to probing fast scrambling. Preprint at https://arxiv.org/abs/1607.01801 (2016).
- 11.
Zhu, G., Hafezi, M. & Grover, T. Measurement of many-body chaos using a quantum clock. Phys. Rev. A 94, 062329 (2016).
- 12.
Campisi, M. & Goold, J. Thermodynamics of quantum information scrambling. Phys. Rev. E 95, 062127 (2017).
- 13.
Yunger Halpern, N. Jarzynski-like equality for the out-of-time-ordered correlator. Phys. Rev. A 95, 012120 (2017).
- 14.
Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).
- 15.
Li, J. et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).
- 16.
Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).
- 17.
Meier, E. J., Ang’ong’a, J., An, F. A. & Gadway, B. Exploring quantum signatures of chaos on a Floquet synthetic lattice. Preprint at https://arxiv.org/abs/1705.06714 (2017).
- 18.
Roberts, D. A. & Swingle, B. Lieb-Robinson bound and the butterfly effect in quantum field theories. Phys. Rev. Lett. 117, 091602 (2016).
- 19.
Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).
- 20.
Kitaev, A. A simple model of quantum holography. KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).
- 21.
Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).
- 22.
Sachdev, S. & Ye, J. Gapless spin-liquid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).
- 23.
Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev-Ye-Kitaev model. J. High Energy Phys. 2016, 1 (2016).
- 24.
Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).
- 25.
Kukuljan, I., Grozdanov, S. & Prosen, T. Weak quantum chaos. Phys. Rev. B 96, 060301 (2017).
- 26.
Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).
- 27.
Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 4 (2016).
- 28.
Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).
- 29.
Yoshida, B. & Kitaev, A. Efficient decoding for the Hayden-Preskill protocol. Preprint at https://arxiv.org/abs/1710.03363 (2017).
- 30.
Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 151 (2017).
- 31.
Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
- 32.
Serbyn, M., Papic, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).
- 33.
Huang, Y., Zhang, Y.-L. & Chen, X. Out-of-time-ordered correlator in many-body localized systems. Ann. Phys. 529, 1600318 (2017).
- 34.
Fan, R., Zhang, P., Shen, H. & Zhai, H. Out-of-time-order correlation for many-body localization. Sci. Bull. 62, 707–711 (2017).
- 35.
Swingle, B. & Chowdhury, D. Slow scrambling in disordered quantum systems. Phys. Rev. B 95, 060201 (2017).
- 36.
Chen, Y. Quantum logarithmic butterfly in many body localization. Preprint at https://arxiv.org/abs/1608.02765 (2016).
- 37.
Slagle, K., Bi, Z., You, Y.-Z. & Xu, C. Out-of-time-order correlation in marginal many-body localized systems. Phys. Rev. B 95, 165136 (2017).
- 38.
Yunger Halpern, N., Swingle, B. & Dressel, J. The quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A 97, 042105 (2018).
- 39.
Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nature Phys 14, 988–990 (2018). https://doi.org/10.1038/s41567-018-0295-5
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Adiabatic landscape and optimal paths in ergodic systems
Physical Review Research (2021)
-
Fraudulent white noise: Flat power spectra belie arbitrarily complex processes
Physical Review Research (2021)
-
Information Scrambling versus Decoherence—Two Competing Sinks for Entropy
PRX Quantum (2021)
-
Absence of Fast Scrambling in Thermodynamically Stable Long-Range Interacting Systems
Physical Review Letters (2021)
-
Scrambling in strongly chaotic weakly coupled bipartite systems: Universality beyond the Ehrenfest timescale
Physical Review B (2020)