Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-temperature anomaly in disordered superconductors near Bc2 as a vortex-glass property

An Author Correction to this article was published on 30 October 2018

This article has been updated


Strongly disordered superconductors in a magnetic field exhibit many characteristic properties of type-II superconductivity—except at low temperatures, where an anomalous linear temperature dependence of the resistive critical field Bc2 is routinely observed. This behaviour violates the conventional theory of superconductivity, and its origin has posed a long-standing puzzle. Here we report systematic measurements of the critical magnetic field and current on amorphous indium oxide films with various levels of disorder. Surprisingly, our measurements show that the Bc2 anomaly is accompanied by mean-field-like scaling of the critical current. Based on a comprehensive theoretical study we argue that these observations are a consequence of the vortex-glass ground state and its thermal fluctuations. Our theory further predicts that the linear-temperature anomaly occurs more generally in both films and disordered bulk superconductors, with a slope that depends on the normal-state sheet resistance, which we confirm experimentally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Low-temperature anomaly of the upper critical field.
Fig. 2: Critical current density near T = 0 and Bc2(0).
Fig. 3: Scaling of the critical current density with magnetic field, jc versus \(\left| {B_{\mathrm{c}}^{j_{\mathrm{c}}} - B} \right|\).
Fig. 4: Vortex de-pinning and thermal creep.
Fig. 5: Disorder dependence of the low-temperature anomaly.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 30 October 2018

    In the version of this Article originally published, equation (5) was incorrect; see the correction notice for details. This has been corrected in all versions of the Article.


  1. 1.

    Abrikosov, A. A. & Gor’kov, L. P. Contribution to the theory of superconducting alloys with paramagnetic impurities. Zh. Eksp. Teor. Fiz. 39, 1781 (1960). (Sov. Phys. JETP 12, 1243 (1961)).

    Google Scholar 

  2. 2.

    Maki, K. Critical fluctuation of the order parameter in a superconductor. I. Prog. Theor. Phys. 40, 193–200 (1968).

    ADS  Article  Google Scholar 

  3. 3.

    Tenhover, M., Johnson, W. L. & Tsuei, C. C. Upper critical fields of amorphous transition metal based alloys. Solid State Commun. 38, 53–57 (1981).

    ADS  Article  Google Scholar 

  4. 4.

    Okuma, S., Komori, F., Ootuka, Y. & Kobayashi, S.-I. Superconducting properties of disordered films of Zn. J. Phys. Soc. Jpn. 52, 2639–2641 (1983).

    ADS  Article  Google Scholar 

  5. 5.

    Hebard, A. F. & Paalanen, M. A. Pair-breaking model for disorder in two-dimensional superconductors. Phys. Rev. B 30, 4063–4066 (1984).

    ADS  Article  Google Scholar 

  6. 6.

    Graybeal, J. M. & Beasley, M. R. Localization and interaction effects in ultrathin amorphous superconducting films. Phys. Rev. B 29, 4167–4169 (1984).

    ADS  Article  Google Scholar 

  7. 7.

    Furubayashi, T., Nishida, N., Yamaguchi, M., Morigaki, K. & Ishimoto, H. Superconducting properties of amorphous Si1−xAux near metal–insulator transition. Solid State Commun. 55, 513–516 (1985).

    ADS  Article  Google Scholar 

  8. 8.

    Nordström, A., Dahlborg, U. & Rapp, Ö. Variation of disorder in superconducting glassy metals. Phys. Rev. B 48, 12866–12873 (1993).

    ADS  Article  Google Scholar 

  9. 9.

    Sacépé, B. et al. High-field termination of a Cooper-pair insulator. Phys. Rev. B 91, 220508(R) (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Ren, Z. et al. Anomalous metallic state above the upper critical field of the conventional three-dimensional superconductor AgSnSe2 with strong intrinsic disorder. Phys. Rev. B 87, 064512 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Bustarret, E. et al. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    Xing, Y. et al. Quantum Griffiths singularity of superconductor–metal transition in Ga thin films. Science 350, 542–545 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Spivak, B. & Zhou, F. Mesoscopic effects in disordered superconductors near H c2. Phys. Rev. Lett. 74, 2800–2803 (1995).

    ADS  Article  Google Scholar 

  14. 14.

    Galitski, V. M. & Larkin, A. I. Disorder and quantum fluctuations in superconducting films in strong magnetic fields. Phys. Rev. Lett. 87, 087001 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    Coffey, L., Levin, K. & Muttalib, K. A. Upper critical field of strongly disordered three-dimensional superconductors: localization effects. Phys. Rev. B 32, 4382–4391 (1985).

    ADS  Article  Google Scholar 

  16. 16.

    Sadovskii, M. V. Superconductivity and localization. Phys. Rep. 282, 225–348 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Smith, R. A., Handy, B. S. & Ambegaokar, V. Upper critical field in disordered two-dimensional superconductors. Phys. Rev. B 61, 6352–6359 (2000).

    ADS  Article  Google Scholar 

  18. 18.

    Kim, H. et al. Effect of magnetic Gd impurities on the superconducting state of amorphous Mo–Ge thin films with different thickness and morphology. Phys. Rev. B 86, 024518 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Galitski, V. M. & Larkin, A. I. Superconducting fluctuations at low temperature. Phys. Rev. B 63, 174506 (2001).

    ADS  Article  Google Scholar 

  20. 20.

    Galitski, V. Nonperturbative microscopic theory of superconducting fluctuations near a quantum critical point. Phys. Rev. Lett. 100, 127001 (2008).

    ADS  Article  Google Scholar 

  21. 21.

    Misra, S., Urban, L., Kim, M., Sambandamurthy, G. & Yazdani, A. Measurements of the magnetic-field-tuned conductivity of disordered two-dimensional Mo43Ge57 and InOx superconducting films: evidence for a universal minimum superfluid response. Phys. Rev. Lett. 110, 037002 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G. & Liu, J. Z. Magnetic measurements of the upper critical field of Ba2Cu3O7−δ single crystals. Phys. Rev. Lett. 62, 1908–1911 (1989).

    ADS  Article  Google Scholar 

  23. 23.

    Golubov, A. A. & Dorin, V. V. The upper critical field of thin superconducting films with large resistance. J. Low Temp. Phys. 78, 375–386 (1990).

    ADS  Article  Google Scholar 

  24. 24.

    Mikitik, G. P. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects. Zh. Eksp. Teor. Fiz. 101, 1042–1055 (1992). (Sov. Phys. JETP 74, 558–564 (1992)).

    ADS  Google Scholar 

  25. 25.

    Osofsky, M. S. et al. Anomalous temperature dependence of the upper critical magnetic field in Bi–Sr–Cu–O. Phys. Rev. Lett. 71, 2315–2318 (1994).

    ADS  Article  Google Scholar 

  26. 26.

    Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 440, 65–68 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Zh. Eksp. Teor. Fiz. 59, 907–920 (1970). (Sov. Phys. JETP 32, 493–500 (1971)).

    MathSciNet  Google Scholar 

  28. 28.

    Kosterlitz, J. M. & Thouless, D. J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C 5, L124–L126 (1972).

    ADS  Article  Google Scholar 

  29. 29.

    Larkin, A. I. & Ovchinnikov, Y. N. Collective pinning. Physica B+C 126, 187–192 (1984).

    ADS  Article  Google Scholar 

  30. 30.

    Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    ADS  Article  Google Scholar 

  31. 31.

    Kwok, W.-K. et al. Vortices in high-performance high-temperature superconductors. Rep. Progr. Phys. 79, 116501 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    ADS  Article  Google Scholar 

  33. 33.

    Sacépé, B. et al. Disorder-induced inhomogeneities of the superconducting state close to the superconductor–insulator transition. Phys. Rev. Lett. 101, 157006 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).

    Article  Google Scholar 

  35. 35.

    Feigel’man, M. V., Ioffe, L. B., Kravtsov, V. E. & Cuevas, E. Fractal superconductivity near localization threshold. Ann. Phys. 325, 1390–1478 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Mkrtchyan, G. S. & Shmidt, V. V. Interaction between a cavity and a vortex in a superconductor of the second kind. Sov. Phys. JETP 34, 195–197 (1972).

    ADS  Google Scholar 

  37. 37.

    Buchacek, M., Willa, R., Geshkenbein, V. B. & Blatter, G. Thermal depinning and creep in strong pinning theory. Preprint at (2018).

  38. 38.

    Strnad, A. R., Hempstead, C. F. & Kim, Y. B. Dissipative mechanism in type-II superconductors. Phys. Rev. Lett. 13, 794–797 (1964).

    ADS  Article  Google Scholar 

  39. 39.

    Xiao, Z. L. et al. Edge and bulk transport in the mixed state of a type-II superconductor. Phys. Rev. B 65, 094511 (2002).

    ADS  Article  Google Scholar 

  40. 40.

    Thomann, A. U., Geshkenbein, V. B. & Blatter, G. Dynamical aspects of strong pinning of magnetic vortices in type-II superconductors. Phys. Rev. Lett. 108, 217001 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Kotliar, G., Sompolinsky, H. & Zippelius, A. Rotational symmetry breaking in Heisenberg spin glasses: A microscopic approach. Phys. Rev. B 35, 311–328 (1987).

    ADS  Article  Google Scholar 

  42. 42.

    Vinokur, V. M., Ioffe, L. B., Larkin, A. I. & Feigel’man, M. V. System of Josephson junctions as a model of a spin glass. Sov. Phys. JETP 66, 198–210 (1987).

    MathSciNet  Google Scholar 

  43. 43.

    Feigel’man, M. V. & Ioffe, L. B. Theory of diamagnetism in granular superconductors. Phys. Rev. Lett. 74, 3447–3450 (1995).

    ADS  Article  Google Scholar 

  44. 44.

    Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    ADS  Article  Google Scholar 

  45. 45.

    Guillamón, I. et al. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential. Nat. Phys. 10, 851–856 (2014).

    Article  Google Scholar 

  46. 46.

    Campbell, A. M. The response of pinned flux vortices to low-frequency fields. J. Phys. C 2, 1492–1501 (1969).

    ADS  Article  Google Scholar 

  47. 47.

    Campbell, A. M. The interaction distance between flux lines and pinning centres. J. Phys. C 4, 3186–3198 (1971).

    ADS  Article  Google Scholar 

  48. 48.

    Coffey, M. W. & Clem, J. R. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Phys. Rev. Lett. 67, 386–389 (1991).

    ADS  Article  Google Scholar 

  49. 49.

    Willa, R., Geshkenbein, V. B. & Blatter, G. Probing the pinning landscape in type-II superconductors via Campbell penetration depth. Phys. Rev. B 93, 064515 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Schneider, T. & Schmidt, A. Dimensional crossover scaling in the layered xy-model and 4He films. J. Phys. Soc. Jpn. 61, 2169–2172 (1992).

    ADS  Article  Google Scholar 

  51. 51.

    Ambegaokar, V., Halperin, B. I., Nelson, D. R. & Siggia, E. D. Dynamics of superfluid films. Phys. Rev. B 21, 1806–1826 (1980).

    ADS  Article  Google Scholar 

  52. 52.

    Williams, G. A. Dimensionality crossover of the 4He superfluid transition in a slab geometry. J. Low. Temp. Phys. 101, 415–420 (1995).

    ADS  Article  Google Scholar 

  53. 53.

    Schultka, N. & Manousakis, E. Crossover from two- to three-dimensional behavior in superfluids. Phys. Rev. B 51, 11712–11720 (1995).

    ADS  Article  Google Scholar 

  54. 54.

    Tinkham, M. Introduction to Superconductivity (Dover, Mineola, 1996).

  55. 55.

    Feigel’man, M. V. & Ioffe, L. B. Superfluid density of a pseudogapped superconductor near the superconductor–insulator transition. Phys. Rev. B 92, 100509(R) (2015).

    ADS  Article  Google Scholar 

Download references


We are grateful to V. Geshkenbein, L. Ioffe, T. Klein and M. Skvortsov for useful discussions. We thank I. Tamir and D. Shahar for providing sample ITb1. B.S., J.S. and F.G. acknowledge support from the LANEF framework (ANR-10-LABX-51-01) and the H2020 ERC grant QUEST no. 637815. K.D. and A.R. acknowledge support from NSF grant no. DMR 1611421. The research of K.M was supported by the Israel Science Foundation grant no. 1889/16. The research of M.V.F. was partially supported by a Skoltech NGP grant.

Author information




J.S., K.D., A.R. and B.S. fabricated the samples. F.G. provided technical support for low-temperature set-ups and measurements. B.S., J.S. and M.O. performed the measurements. B.S. and J.S. carried out data analysis. K.M. and M.F. developed the theory. B.S., K.M and M.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Benjamin Sacépé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

14 pages, 9 figures, 1 table, 16 references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sacépé, B., Seidemann, J., Gay, F. et al. Low-temperature anomaly in disordered superconductors near Bc2 as a vortex-glass property. Nature Phys 15, 48–53 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing