Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase transition lowering in dynamically compressed silicon

Abstract

Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental configuration and data examples.
Fig. 2: The greater sensitivity of the transverse configuration.
Fig. 3: Evidence of the onset of melting.
Fig. 4: Dynamic shear-lowering of phase transition boundaries.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request

References

  1. Bancroft, D., Peterson, E. L. & Minshall, S. Polymorphism of iron at high pressure. J. Appl. Phys. 27, 291–298 (1956).

    Article  ADS  Google Scholar 

  2. Colburn, N. L., Forbes, J. W. & Jones, H. D. Electrical measurements in silicon under shock-wave compression. J. Appl. Phys. 43, 5007–5012 (1972).

    Article  ADS  Google Scholar 

  3. Smith, R. F. et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon. Phys. Rev. B 86, 245204 (2012).

    Article  ADS  Google Scholar 

  4. Gust, W. H. & Royce, E. B. Axial yield strengths and two successive phase transition stresses for crystalline silicon. J. Appl. Phys. 42, 1897–1905 (1971).

    Article  ADS  Google Scholar 

  5. Goto, T., Sato, T. & Syono, Y. Reduction of shear strength and phase-transition in shock-loaded silicon. Jpn. J. Appl. Phys. 21, L369–L371 (1982).

    Article  ADS  Google Scholar 

  6. Turneaure, S. J. & Gupta, Y. M. Inelastic deformation and phase transformation of shock compressed silicon single crystals. Appl. Phys. Lett. 91, 201913 (2007).

    Article  ADS  Google Scholar 

  7. Smith, R. F. et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth. Phys. Rev. Lett. 101, 065701 (2008).

    Article  ADS  Google Scholar 

  8. Smith, R. F. et al. Time-dependence of the alpha to epsilon phase transformation in iron. J. Appl. Phys. 114, 223507 (2013).

    Article  ADS  Google Scholar 

  9. Higginbotham, A. et al. Inelastic response of silicon to shock compression. Sci. Rep. 6, 24211 (2016).

    Article  ADS  Google Scholar 

  10. Jamieson, J. C. Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 139, 762–764 (1963).

    Article  ADS  Google Scholar 

  11. McMahon, M. I. & Nelmes, R. J. New high-pressure phase of Si. Phys. Rev. B 47, 8337–8340 (1993).

    Article  ADS  Google Scholar 

  12. McMahon, M. I., Nelmes, R. J., Wright, N. G. & Allan, D. R. Pressure dependence of the Imma phase of silicon. Phys. Rev. B 50, 739–743 (1994).

    Article  ADS  Google Scholar 

  13. Olijnyk, H., Sikka, S. K. & Holzapfel, W. B. Structural phase transitions in Si and Ge under pressures up to 50 GPa. Phys. Lett. A 103, 137–140 (1984).

    Article  ADS  Google Scholar 

  14. Duclos, S. J., Vohra, Y. K. & Ruoff, A. L. hcp-to-fcc transition in silicon at 78 GPa and studies to 100 GPa. Phys. Rev. Lett. 58, 775–777 (1987).

    Article  ADS  Google Scholar 

  15. Hanfland, M., Schwarz, U., Syassen, K. & Takemura, K. Crystal structure of the high-pressure phase silicon VI. Phys. Rev. Lett. 82, 1197–1200 (1999).

    Article  ADS  Google Scholar 

  16. Wentorf, R. H. & Kasper, J. S. Two new forms of silicon. Science 139, 338–339 (1963).

    Article  ADS  Google Scholar 

  17. Piltz, R. O. et al. Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072–4085 (1995).

    Article  ADS  Google Scholar 

  18. Mogni, G., Higginbotham, A., Gaál-Nagy, K., Park, N. & Wark, J. S. Molecular dynamics simulations of shock-compressed single-crystal silicon. Phys. Rev. B 89, 064104 (2014).

    Article  ADS  Google Scholar 

  19. Nagler, B. et al. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source. J. Synchrotron. Radiat. 22, 520–525 (2015).

    Article  Google Scholar 

  20. Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photon. 9, 274–279 (2015).

    Article  ADS  Google Scholar 

  21. Gorman, M. G. et al. Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Phys. Rev. Lett. 115, 095701 (2015).

    Article  ADS  Google Scholar 

  22. Gleason, A. E. et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).

    Article  Google Scholar 

  23. Harmand, M. et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Phys. Rev. B 92, 024108 (2015).

    Article  ADS  Google Scholar 

  24. Kraus, D. et al. Nanosecond formation of diamond and ionsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).

    Article  ADS  Google Scholar 

  25. Rygg, J. R. et al. Powder diffraction from solids in the terapascal regime. Rev. Sci. Inst. 83, 113904 (2012).

    Article  ADS  Google Scholar 

  26. Coppari, F. et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926–929 (2013).

    Article  ADS  Google Scholar 

  27. Lazicki, A. et al. X-ray diffraction of solid tin to 1.2 TPa. Phys. Rev. Lett. 115, 075502 (2015).

    Article  ADS  Google Scholar 

  28. Wang, J. et al. X-ray diffraction of molybdenum under shock compression to 450 GPa. Phys. Rev. B 92, 174114 (2015).

    Article  ADS  Google Scholar 

  29. Le Bail, A. L. Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr. 20, 316–326 (2005).

    Article  ADS  Google Scholar 

  30. Cheng, C., Huang, W. H. & Li, H. J. Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge. Phys. Rev. B 63, 153202 (2001).

    Article  ADS  Google Scholar 

  31. Gupta, M. C. & Ruoff, A. L. Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072–1075 (1980).

    Article  ADS  Google Scholar 

  32. Lewis, S. P. & Cohen, M. L. Theoretical study of high-pressure orthorhombic silicon. Phys. Rev. B 48, 16144–16147 (1993).

    Article  ADS  Google Scholar 

  33. Funamori, N. & Tsuji, K. Pressure-induced structural changes of liquid silicon. Phys. Rev. Lett. 88, 255508 (2002).

    Article  ADS  Google Scholar 

  34. Daisenberger, D. et al. High-pressure X-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Phys. Rev. B 75, 224118 (2007).

    Article  ADS  Google Scholar 

  35. Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2010).

    Article  Google Scholar 

  36. Hahn, E. N., Zhao, S., Bringa, E. M. & Meyers, M. A. Supersonic dislocation bursts in silicon. Sci. Rep. 6, 26977 (2016).

    Article  ADS  Google Scholar 

  37. Zhao, S. et al. Pressure and shear-induced amorphization of silicon. Extreme Mech. Lett. 5, 74–80 (2015).

    Article  Google Scholar 

  38. Turneaure, S. J., Sinclair, N. & Gupta, Y. M. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon. Phys. Rev. Lett. 117, 045502 (2016).

    Article  ADS  Google Scholar 

  39. Strickson, O. & Artacho, E. Ab initio calculation of the shock Hugoniot of bulk silicon. Phys. Rev. B 93, 094107 (2016).

    Article  ADS  Google Scholar 

  40. Dixit, S. N., Lawson, J. K., Manes, K. R. & Powell, H. T. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett. 19, 417–419 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.E.M and A.S. acknowledge funding from the Volkswagen Foundation. J.S.W. is grateful for support from EPSRC under grant EP/J017256/1. This work is supported by the French Agence Nationale de la Recherche (ANR) with the ANR IRONFEL 12-PDOC-0011. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences under contract No. SF00515. The authors thank J. B. Hastings and L. B. Fletcher for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.E.M., A.H. and A.N. designed the experiment, E.E.M., A.H., D.S. and C.S. designed the targets and C.S. manufactured the targets. E.E.M., A.K., M.H., E.G., Z.K., H-.J.L., B.N., A.P., M.R., A.S., C.S., F.T., S.T., T.T. and A.H. contributed to the set-up of the experiment and data collection. E.E.M. analysed the data, with assistance from A.K., M.H., R.F.S. and A.H., then E.E.M. and A.H. interpreted the data. E.E.M., A.H. and J.S.W. wrote the manuscript. All authors commented critically on the manuscript.

Corresponding author

Correspondence to E. E. McBride.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

8 chapters, 15 figures, 41 references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, E.E., Krygier, A., Ehnes, A. et al. Phase transition lowering in dynamically compressed silicon. Nature Phys 15, 89–94 (2019). https://doi.org/10.1038/s41567-018-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0290-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing