Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons

Abstract

In a Bose–Einstein condensate, bosons condense in the lowest-energy mode available and exhibit high coherence. Quantum condensation is inherently a multimode phenomenon, yet understanding of the condensation transition in the macroscopic limit is hampered by the difficulty in resolving populations of individual modes and the coherences between them. Here, we report non-equilibrium Bose–Einstein condensation of 7 ± 2 photons in a sculpted dye-filled microcavity, where the extremely small particle number and large mode spacing of the condensate allow us to measure occupancies and coherences of the individual energy levels of the bosonic field. Coherence of the individual modes is found to generally increase with increasing photon number. However, at the break-down of thermal equilibrium we observe phase transitions to a multimode condensate regime wherein coherence unexpectedly decreases with increasing population, suggesting the presence of strong intermode phase or number correlations despite the absence of a direct nonlinearity. Experiments are well-matched to a detailed non-equilibrium model. We find that microlaser and Bose–Einstein statistics each describe complementary parts of our data and are limits of our model in appropriate regimes, providing elements to inform the debate on the differences between the two concepts1,2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sculpted dye-filled microcavity allowing mode-resolved characterization of condensation threshold.
Fig. 2: The break-down of thermalization.
Fig. 3: Phase coherence measured for various delay times through a Mach–Zehnder interferometer using a spectrometer.
Fig. 4: Coherence time of the ground state.

Similar content being viewed by others

References

  1. Scully, M. O. Condensation of N bosons and the laser phase transition analogy. Phys. Rev. Lett. 82, 3927–3931 (1999).

    Article  ADS  Google Scholar 

  2. Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science 279, 1005–1007 (1998).

    Article  ADS  Google Scholar 

  3. Serwane, F. et al. Deterministic preparation of a tunable few-fermion system. Science 332, 336–338 (2011).

    Article  ADS  Google Scholar 

  4. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article  ADS  Google Scholar 

  5. Chuu, C.-S. et al. Direct observation of sub-poissonian number statistics in a degenerate bose gas. Phys. Rev. Lett. 95, 260403 (2005).

    Article  ADS  Google Scholar 

  6. Bourgain, R., Pellegrino, J., Fuhrmanek, A., Sortais, Y. R. P. & Browaeys, A. Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Phys. Rev. A. 88, 023428 (2013).

    Article  ADS  Google Scholar 

  7. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  8. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  9. Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

    Article  ADS  Google Scholar 

  10. Schnell, A., Vorberg, D., Ketzmerick, R. & Eckardt, A. High-temperature nonequilibrium Bose condensation induced by a hot needle. Phys. Rev. Lett. 119, 140602 (2017).

    Article  ADS  Google Scholar 

  11. Knebel, J., Weber, M. F., Krüger, T. & Frey, E. Evolutionary games of condensates in coupled birth–death processes. Nat. Commun. 6, 6977 (2015).

    Article  ADS  Google Scholar 

  12. Nyman, R. A. & Szymańska, M. H. Interactions in dye-microcavity photon condensates and the prospects for their observation. Phys. Rev. A. 89, 033844 (2014).

    Article  ADS  Google Scholar 

  13. van der Wurff, E. C. I., de Leeuw, A.-W., Duine, R. A. & Stoof, H. T. C. Interaction effects on number fluctuations in a Bose-Einstein condensate of light. Phys. Rev. Lett. 113, 135301 (2014).

    Article  ADS  Google Scholar 

  14. Dung, D. et al. Variable potentials for thermalized light and coupled condensates. Nat. Photon. 11, 565–569 (2017).

    Article  Google Scholar 

  15. Schmitt, J. et al. Thermalization kinetics of light: From laser dynamics to equilibrium condensation of photons. Phys. Rev. A. 92, 011602 (2015).

    Article  ADS  Google Scholar 

  16. Hesten, H. J., Nyman, R. A. & Mintert, F. Decondensation in non-equilibrium photonic condensates: when less is more. Phys. Rev. Lett. 120, 040601 (2018).

    Article  ADS  Google Scholar 

  17. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  18. Kirton, P. & Keeling, J. Thermalization and breakdown of thermalization in photon condensates. Phys. Rev. A. 91, 033826 (2015).

    Article  ADS  Google Scholar 

  19. Keeling, J. & Kirton, P. Spatial dynamics, thermalization, and gain clamping in a photon condensate. Phys. Rev. A. 93, 013829 (2016).

    Article  ADS  Google Scholar 

  20. Moodie, R. I., Kirton, P. & Keeling, J. Polarization dynamics in a photon Bose-Einstein condensate. Phys. Rev. A. 96, 043844 (2017).

    Article  ADS  Google Scholar 

  21. Greveling, S., van der Laan, F., Jagers, H. & van Oosten, D. Polarization of a Bose-Einstein condensate of photons in a dye-filled microcavity. Preprint at https://arxiv.org/abs/1712.08426 (2017).

  22. Mullin, W. J. Bose-Einstein condensation in a harmonic potential. J. Low Temp. Phys. 106, 615–641 (1997).

    Article  ADS  Google Scholar 

  23. Marelic, J. et al. Spatiotemporal coherence of non-equilibrium multimode photon condensates. New J. Phys. 18, 103012 (2016).

    Article  ADS  Google Scholar 

  24. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Article  ADS  Google Scholar 

  25. Damm, T., Dung, D., Vewinger, F., Weitz, M. & Schmitt, J. First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas. Nat. Commun. 8, 158 (2017).

    Article  ADS  Google Scholar 

  26. Kohnen, M. & Nyman, R. A. Temporal and spatiotemporal correlation functions for trapped Bose gases. Phys. Rev. A. 91, 033612 (2015).

    Article  ADS  Google Scholar 

  27. Marconi, M. et al. Far-from-equilibrium route to superthermal light in bimodal nanolasers. Phys. Rev. X 8, 011013 (2018).

    Google Scholar 

  28. Marelic, J. & Nyman, R. A. Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose-Einstein condensation. Phys. Rev. A. 91, 033813 (2015).

    Article  ADS  Google Scholar 

  29. Marelic, J., Walker, B. T. & Nyman, R. A. Phase-space views into dye-microcavity thermalized and condensed photons. Phys. Rev. A. 94, 063812 (2016).

    Article  ADS  Google Scholar 

  30. Dolan, P. R., Hughes, G. M., Grazioso, F., Patton, B. R. & Smith, J. M. Femtoliter tunable optical cavity arrays. Opt. Lett. 35, 3556–3558 (2010).

    Article  ADS  Google Scholar 

  31. Flatten, L., Trichet, A. & Smith, J. Spectral engineering of coupled open-access microcavities. Laser Photon. Rev. 10, 257–263 (2016).

    Article  ADS  Google Scholar 

  32. Trichet, A. A. P., Dolan, P. R., Coles, D. M., Hughes, G. M. & Smith, J. M. Topographic control of open-access microcavities at the nanometer scale. Opt. Express 23, 17205–17216 (2015).

    Article  ADS  Google Scholar 

  33. Hunger, D. et al. A fiber fabry–perot cavity with high finesse. New J. Phys. 12, 065038 (2010).

    Article  ADS  Google Scholar 

  34. Kirton, P. & Keeling, J. Nonequilibrium Model of Photon Condensation. Phys. Rev. Lett. 111, 100404 (2013).

    Article  ADS  Google Scholar 

  35. Björk, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A. 50, 1675–1680 (1994).

    Article  ADS  Google Scholar 

  36. Rice, P. R. & Carmichael, H. J. Photon statistics of a cavity-QED laser: A comment on the laser–phase-transition analogy. Phys. Rev. A. 50, 4318–4329 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Oulton for enlightening discussions. We are grateful to the UK Engineering and Physical Sciences Research Council for supporting this work through fellowship no. EP/J017027/1 (to R.A.N.) and the Controlled Quantum Dynamics CDT EP/L016524/1 (B.T.W. and H.J.H.). D.H. thanks the DFG cluster of excellence ‘Nanosystems Initiative Munich’. L.C.F., A.A.P.T and J.M.S. acknowledge support from the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Contributions

B.T.W. carried out the experiments with assistance from R.A.N., and both analysed the data. L.C.F., A.A.P.T., J.M.S. and D.H. fabricated the mirrors and assessed their performance. H.J.H. and R.A.N. and worked out the theory with assistance from F.M. R.A.N. conceived the experiment, and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Robert A. Nyman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Data availability

The data underlying this manuscript, source code to reproduce the figures and any further details are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary notes, figures and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, B.T., Flatten, L.C., Hesten, H.J. et al. Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons. Nature Phys 14, 1173–1177 (2018). https://doi.org/10.1038/s41567-018-0270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0270-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing