Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superradiant emission from colour centres in diamond


Superradiance is a fundamental collective effect where radiation is amplified by the coherence of multiple emitters1. Superradiance plays a prominent role in optics (where it enables the design of lasers with substantially reduced linewidths2,3) and quantum mechanics4, and is even used to explain cosmological observations such as Hawking radiation from black holes5. Resonators coupled to spin ensembles6,7,8 are promising future building blocks of integrated quantum devices that will involve superradiance. As such, it is important to study its fundamental properties within such devices. Although experiments in the strong-coupling regime have shown oscillatory behaviour in these systems9,10, a clear signature of Dicke superradiance has so far been missing. Here we explore superradiance in a system composed of a three-dimensional lumped element resonator in the fast cavity limit inductively coupled to an inhomogeneously broadened ensemble of nitrogen–vacancy centres. We observe a superradiant pulse being emitted a trillion times faster than the decay for an individual nitrogen–vacancy centre. This is further confirmed by the nonlinear scaling of the emitted radiation intensity with respect to the ensemble size. Our work provides the foundation for future quantum technologies including solid-state superradiant masers2.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Cavity response under varying drive powers.
Fig. 3: Dynamics of the superradiant decay.
Fig. 4: Nonlinear scaling of the emitted radiation intensity.


  1. 1.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  Article  Google Scholar 

  2. 2.

    Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Meiser, D., Ye, J., Carlson, D. R. & Holland, M. J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 102, 163601 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Bonifacio, R., Schwendimann, P. & Haake, F. Quantum statistical theory of superradiance. II. Phys. Rev. A 4, 854–864 (1971).

    ADS  Article  Google Scholar 

  5. 5.

    Thorne, K. S. Black Holes and Time Warps: Einstein’s Outrageous Legacy 430–435 (Norton, New York, NY, 1994).

  6. 6.

    Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Kubo, Y. et al. Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys. Rev. Lett. 107, 220501 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Putz, S. et al. Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED. Nat. Phys. 10, 720–724 (2014).

    Article  Google Scholar 

  10. 10.

    Rose, B. et al. Coherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity. Phys. Rev. X 7, 031002 (2017).

    Google Scholar 

  11. 11.

    Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    ADS  Article  Google Scholar 

  12. 12.

    Julsgaard, B. & Mølmer, K. Dynamical evolution of an inverted spin ensemble in a cavity: inhomogeneous broadening as a stabilizing mechanism. Phys. Rev. A 86, 063810 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    Mlynek, J. A., Abdumalikov, A. A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Eschner, J., Raab, C., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    DeVoe, R. G. & Brewer, R. G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049–2052 (1996).

    ADS  Article  Google Scholar 

  16. 16.

    Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    Article  Google Scholar 

  17. 17.

    Gross, M., Fabre, C., Pillet, P. & Haroche, S. Observation of near-infrared Dicke superradiance on cascading transitions in atomic sodium. Phys. Rev. Lett. 36, 1035–1038 (1976).

    ADS  Article  Google Scholar 

  18. 18.

    Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    ADS  Article  Google Scholar 

  19. 19.

    Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999).

    Article  Google Scholar 

  20. 20.

    Ten Brinke, N. & Schützhold, R. Dicke superradiance as a nondestructive probe for quantum quenches in optical lattices. Phys. Rev. A 92, 013617 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Norcia, M. A., Winchester, M. N., Cline, J. R. K. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Gross, M., Goy, P., Fabre, C., Haroche, S. & Raimond, J. M. Maser oscillation and microwave superradiance in small systems of Rydberg atoms. Phys. Rev. Lett. 43, 343–346 (1979).

    ADS  Article  Google Scholar 

  23. 23.

    Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    ADS  Article  Google Scholar 

  24. 24.

    Temnov, V. V. & Woggon, U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett. 95, 243602 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    Delanty, M., Rebić, S. & Twamley, J. Superradiance and phase multistability in circuit quantum electrodynamics. New J. Phys. 13, 053032 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Jodoin, R. & Mandel, L. Superradiance in an inhomogeneously broadened atomic system. Phys. Rev. A 9, 873–884 (1974).

    ADS  Article  Google Scholar 

  27. 27.

    Bennett, S. D. et al. Phonon-induced spin–spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Lambert, N. et al. Superradiance with an ensemble of superconducting flux qubits. Phys. Rev. B 94, 224510 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Shammah, N., Lambert, N., Nori, F. & De Liberato, S. Superradiance with local phase-breaking effects. Phys. Rev. A 96, 023863 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Angerer, A. et al. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator. Appl. Phys. Lett. 109, 033508 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Doherty, M. W. et al. The nitrogen–vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  33. 33.

    Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Astner, T. et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater. 17, 313–317 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Nefedkin, N. E., Andrianov, E. S., Pukhov, A. A. & Vinogradov, A. P. Superradiance enhancement by bad-cavity resonator. Laser Phys. 27, 065201 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Tavis, M. & Cummings, F. W. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    ADS  Article  Google Scholar 

  37. 37.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  38. 38.

    Grezes, C. et al. Storage and retrieval of microwave fields at the single-photon level in a spin ensemble. Phys. Rev. A 92, 020301 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Jin, L. et al. Proposal for a room-temperature diamond maser. Nat. Commun. 6, 8251 (2015).

    Article  Google Scholar 

  40. 40.

    Weiner, J. M., Cox, K. C., Bohnet, J. G., Chen, Z. & Thompson, J. K. Superradiant Raman laser magnetometer. Appl. Phys. Lett. 101, 261107 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Acosta, V. M. et al. Diamonds with a high density of nitrogen–vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009).

    ADS  Article  Google Scholar 

  42. 42.

    Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotech. 11, 253 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Nefedkin, N. E. et al. Superradiance of non-Dicke states. Opt. Express 25, 2790–2804 (2017).

    ADS  Article  Google Scholar 

Download references


We would like to thank D. Krimer, M. Zens, S. Rotter and H. Ritsch for discussions and G. Wachter for help with the setup of the laser system. The experimental effort has been supported by the Top-/Anschubfinanzierung grant of the TU Wien and the JTF project “The Nature of Quantum Networks” (ID 60478). A.A. and T.A. acknowledge support by the Austrian Science Fund (FWF) in the framework of the Doctoral School “Building Solids for Function” Project W1243. K.N. acknowledges support from the MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Science of Hybrid Quantum Systems” no. 15H05870. J.I. acknowledges support by the Japan Society for the Promotion of Science KAKENHI grant no. 26220903 and grant no. 17H02751. J.S. acknowledges financial support from the Wiener Wissenschafts- und TechnologieFonds (WWTF) project No MA16-066 (“SEQUEX”).

Author information




A.A., S.P., T.A., J.S. and J.M designed and set up the experiment. A.A. and K.S. carried out the measurements under the supervision of J.M. W.J.M. and K.N provided the theoretical framework. J.I., S.O. and H.S. characterized and provided the diamond sample. A.A. wrote the manuscript, to which all authors suggested improvements.

Corresponding authors

Correspondence to Andreas Angerer or Johannes Majer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Angerer, A., Streltsov, K., Astner, T. et al. Superradiant emission from colour centres in diamond. Nature Phys 14, 1168–1172 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing