Abstract
The superconductor–insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial because many experiments exhibit a metallic regime with saturating low-temperature resistance, which is at odds with conventional theory. Here, we explore this transition in a highly controllable system, a semiconductor heterostructure with epitaxial aluminium, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic and insulating behaviour, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor–insulator transition; it also improves the scaling behaviour while strongly altering the scaling exponent.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Relaxation electrodynamics of superinsulators
Scientific Reports Open Access 19 November 2022
-
Little-Parks like oscillations in lightly doped cuprate superconductors
Nature Communications Open Access 14 March 2022
-
Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor
Nature Communications Open Access 09 September 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).
Lee, S. J. & Ketterson, J. B. Critical sheet resistance for the suppression of superconductivity in thin Mo-C films. Phys. Rev. Lett. 64, 3078–3081 (1990).
Goldman, A. M. Superconductor–insulator transitions. Int. J. Mod. Phys. B 24, 4081–4101 (2010).
Gantmakher, V. F. & Dolgopolov, V. T. Superconductor–insulator quantum phase transition. Phys. Usp. 53, 1–49 (2010).
Dobrosavljevic, V., Trivedi, N. & Valles, J. M. Jr Conductor Insulator Quantum Phase Transitions (Oxford Univ. Press, Oxford, 2012).
Kapitulnik, A., Kivelson, S. A. & Spivak, B. Anomalous metals – failed superconductors. Preprint at https://arxiv.org/abs/1712.07215 (2017).
Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).
Yazdani, A. & Kapitulnik, A. Superconducting–insulating transition in two-dimensional a-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).
Steiner, M. & Kapitulnik, A. Superconductivity in the insulating phase above the field-tuned superconductor–insulator transition in disordered indium oxide films. Physica C 422, 16–26 (2005).
Bollinger, A. T. et al. Superconductor–insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).
Schneider, R., Zaitsev, A. G., Fuchs, D. & v. Löhneysen, H. Superconductor–insulator quantum phase transition in disordered FeSe thin films. Phys. Rev. Lett. 108, 257003 (2012).
Allain, A., Han, Z. & Bouchiat, V. Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids. Nat. Mater. 11, 590–594 (2012).
Marković, N., Christiansen, C., Mack, A. M., Huber, W. H. & Goldman, A. M. Superconductor–insulator transition in two dimensions. Phys. Rev. B 60, 4320–4328 (1999).
Park, S., Shin, J. & Kim, E. Scaling analysis of field-tuned superconductor–insulator transition in two-dimensional tantalum thin films. Sci. Rep. 7, 42969 (2017).
Steiner, M. A., Breznay, N. P. & Kapitulnik, A. Approach to a superconductor-to-Bose-insulator transition in disordered films. Phys. Rev. B 77, 212501 (2008).
Eley, S., Gopalakrishnan, S., Goldbart, P. M. & Mason, N. Approaching zero-temperature metallic states in mesoscopic superconductor–normal–superconductor arrays. Nat. Phys. 8, 59–62 (2012).
Han, Z. et al. Collapse of superconductivity in a hybrid tin-graphene Josephson junction array. Nat. Phys. 10, 380–386 (2014).
Feigel’man, M. & Larkin, A. Quantum superconductor–metal transition in a 2D proximity-coupled array. Chem. Phys. 235, 107–114 (1998).
Spivak, B., Zyuzin, A. & Hruska, M. Quantum superconductor–metal transition. Phys. Rev. B 64, 132502 (2001).
Spivak, B., Oreto, P. & Kivelson, S. A. Theory of quantum metal to superconductor transitions in highly conducting systems. Phys. Rev. B 77, 214523 (2008).
Lee, D.-H., Kivelson, S. & Zhang, S.-C. Theory of the quantum-Hall liquid to insulator transition. Phys. Rev. Lett. 67, 3302–3305 (1991).
Kivelson, S., Lee, D.-H. & Zhang, S.-C. Global phase diagram in the quantum Hall effect. Phys. Rev. B 46, 2223–2238 (1992).
Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003).
Kapitulnik, A., Mason, N., Kivelson, S. A. & Chakravarty, S. Effects of dissipation on quantum phase transitions. Phys. Rev. B 63, 125322 (2001).
Mulligan, M. & Raghu, S. Composite fermions and the field-tuned superconductor-insulator transition. Phys. Rev. B 93, 205116 (2016).
Tamir, I. et al. Extreme sensitivity of the superconducting state in thin films. Preprint at https://arxiv.org/abs/1804.04648 (2018).
Shabani, J. et al. Two-dimensional epitaxial superconductor–semiconductor heterostructures: A platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).
Chalker, J. T. et al. Thermal metal in network models of a disordered two-dimensional superconductor. Phys. Rev. B 65, 012506 (2001).
Dimitrova, O. & Feigel’man, M. V. Theory of a two-dimensional superconductor with broken inversion symmetry. Phys. Rev. B 76, 014522 (2007).
Levine, Y., Haim, A. & Oreg, Y. Realizing topological superconductivity with superlattices. Phys. Rev. B 96, 165147 (2017).
Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotech. 10, 232–236 (2015).
Kjaergaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016).
Kjaergaard, M. et al. Transparent semiconductor–superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Phys. Rev. Appl. 7, 034029 (2017).
Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).
Biscaras, J. et al. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 12, 542–548 (2013).
Breznay, N. P., Steiner, M. A., Kivelson, S. A. & Kapitulnik, A. Phase transition in granulated superconductors. Proc. Natl Acad. Sci. USA 113, 208–285 (2016).
Shkovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
Baturina, T. I., Mironov, A. Y., Vinokur, V. M., Baklanov, M. R. & Strunk, C. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor–insulator transition in TiN thin films. Phys. Rev. Lett. 99, 39 (2007).
Joung, D. & Khondaker, S. I. Efros–Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp 2 fraction. Phys. Rev. B 86, 1964–1968 (2012).
Sambandamurthy, G., Engel, L. W., Johansson, A. & Shahar, D. Superconductivity-related insulating behavior. Phys. Rev. Lett. 92, 107005 (2004).
Fazio, R. & van der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Phys. Rep. 355, 235–334 (2001).
Baelus, B. J. et al. Multivortex and giant vortex states near the expulsion and penetration fields in thin mesoscopic superconducting squares. Phys. Rev. B 73, 024514 (2006).
Vinokur, V. M. et al. Superinsulator and quantum synchronization. Nature 452, 613–615 (2008).
Wagenblast, K. H., vanOtterlo, A., Schön, G. & Zimanyi, G. T. New universality class at the superconductor–insulator transition. Phys. Rev. Lett. 78, 1779–1782 (1997).
van der Zant, H. S. J., Elion, W. J., Geerligs, L. J. & Mooij, J. E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Phys. Rev. B 54, 10081–10093 (1996).
Couëdo, F. et al. Dissipative phases across the superconductor-to-insulator transition. Sci. Rep. 6, 35834 (2016).
Suominen, H. J. et al. Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions. Phys. Rev. B 95, 035307 (2017).
Acknowledgements
We thank A. Kapitulnik, S. Kivelson, K. Rasmussen, D. Shahar, B. Spivak, C. Strunk and V. Vinokur for useful discussion. Research was supported by Microsoft Station Q and the Danish National Research Foundation. C.M.M. acknowledges support from the Villum Foundation. F.N. acknowledges support from a Marie Curie Fellowship (no. 659653).
Author information
Authors and Affiliations
Contributions
C.B., C.M. and F.N. conceived the experiments. C.P. and J.S. grew the wafer. C.B. and F.N. fabricated the samples and performed measurements. C.B., C.M. and F.N. analysed the data and wrote the manuscript with input from M.K. and H.S.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Material
Supplementary figures 1–8; Supplementary references 1–7
Rights and permissions
About this article
Cite this article
Bøttcher, C.G.L., Nichele, F., Kjaergaard, M. et al. Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array. Nature Phys 14, 1138–1144 (2018). https://doi.org/10.1038/s41567-018-0259-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0259-9
This article is cited by
-
Little-Parks like oscillations in lightly doped cuprate superconductors
Nature Communications (2022)
-
Relaxation electrodynamics of superinsulators
Scientific Reports (2022)
-
Signatures of a strange metal in a bosonic system
Nature (2022)
-
Superconductivity and Weak Anti-localization at KTaO3 (111) Interfaces
Journal of Electronic Materials (2022)
-
Robust anomalous metallic states and vestiges of self-duality in two-dimensional granular In-InOx composites
npj Quantum Materials (2021)