Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct entropy measurement in a mesoscopic quantum system

Abstract

The entropy of an electronic system offers important insights into the nature of its quantum mechanical ground state. This is particularly valuable in cases where the state is difficult to identify by conventional experimental probes, such as conductance. Traditionally, entropy measurements are based on bulk properties, such as heat capacity, that are easily observed in macroscopic samples but are unmeasurably small in systems that consist of only a few particles1,2. Here, we develop a mesoscopic circuit to directly measure the entropy of just a few electrons, and demonstrate its efficacy using the well-understood spin statistics of the first, second and third electron ground states in a GaAs quantum dot3,4,5,6,7,8. The precision of this technique, quantifying the entropy of a single spin-1/2 to within 5% of the expected value of kB ln 2, shows its potential for probing more exotic systems. For example, entangled states or those with non-Abelian statistics could be clearly distinguished by their low-temperature entropy9,10,11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement protocol.
Fig. 2: Entropy measurement for a single spin-\(1/2\).
Fig. 3: Magnetic field dependence.
Fig. 4: Entropic signature of a singlet–triplet crossing.

Similar content being viewed by others

References

  1. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in spin ice. Nature 399, 333–335 (1999).

    Article  ADS  Google Scholar 

  2. Schmidt, B. A. et al. Specific heat and entropy of fractional quantum Hall states in the second Landau level. Phys. Rev. B 95, 201306 (2017).

    Article  ADS  Google Scholar 

  3. Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996).

    Article  ADS  Google Scholar 

  4. Ciorga, M. et al. Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315–R16318 (2000).

    Article  ADS  Google Scholar 

  5. Duncan, D. S., Goldhaber-Gordon, D., Westervelt, R. M., Maranowski, K. D. & Gossard, A. C. Coulomb-blockade spectroscopy on a small quantum dot in a parallel magnetic field. Appl. Phys. Lett. 77, 2183–2185 (2000).

    Article  ADS  Google Scholar 

  6. Lindemann, S. et al. Stability of spin states in quantum dots. Phys. Rev. B 66, 195314 (2002).

    Article  ADS  Google Scholar 

  7. Potok, R. M. et al. Spin and polarized current from Coulomb blockaded quantum dots. Phys. Rev. Lett. 91, 016802 (2003).

    Article  ADS  Google Scholar 

  8. Hofmann, A. et al. Measuring the degeneracy of discrete energy levels using a GaAs/AlGaAs quantum dot. Phys. Rev. Lett. 117, 206803 (2016).

    Article  ADS  Google Scholar 

  9. Cooper, N. R. & Stern, A. Observable bulk signatures of non-Abelian quantum Hall states. Phys. Rev. Lett. 102, 176807 (2009).

    Article  ADS  Google Scholar 

  10. Ben-Shach, G., Laumann, C. R., Neder, I., Yacoby, A. & Halperin, B. I. Detecting non-Abelian anyons by charging spectroscopy. Phys. Rev. Lett. 110, 106805 (2013).

    Article  ADS  Google Scholar 

  11. Smirnov, S. Majorana tunneling entropy. Phys. Rev. B 92, 195312 (2015).

    Article  ADS  Google Scholar 

  12. Hou, C.-Y., Shtengel, K., Refael, G. & Goldbart, P. M. Ettingshausen effect due to Majorana modes. New J. Phys. 14, 105005 (2012).

    Article  ADS  Google Scholar 

  13. Alkurtass, B. et al. Entanglement structure of the two-channel Kondo model. Phys. Rev. B 93, 081106 (2016).

    Article  ADS  Google Scholar 

  14. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  ADS  Google Scholar 

  15. Ono, K. & Tarucha, S. Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots. Phys. Rev. Lett. 92, 256803 (2004).

    Article  ADS  Google Scholar 

  16. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn 158–190 (Butterworth-Heinemann, Oxford, 1980).

  17. Venkatachalam, V., Yacoby, A., Pfeiffer, L. & West, K. Local charge of the v = 5/2 fractional quantum Hall state. Nature 469, 185–188 (2011).

    Article  ADS  Google Scholar 

  18. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    Article  ADS  Google Scholar 

  19. Staring, A. A. M. et al. Coulomb-blockade oscillations in the thermopower of a quantum dot. EPL 22, 57 (1993).

    Article  ADS  Google Scholar 

  20. Thierschmann, H. et al. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotech 10, 854–858 (2015).

    Article  ADS  Google Scholar 

  21. Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).

    Article  ADS  Google Scholar 

  22. Gustavsson, S. et al. Electron counting in quantum dots. Surf. Sci. Rep. 64, 191–232 (2009).

    Article  ADS  Google Scholar 

  23. Cockins, L. et al. Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy. Proc. Natl Acad. Sci. USA 107, 9496–9501 (2010).

    Article  ADS  Google Scholar 

  24. Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

    Article  ADS  Google Scholar 

  25. Beckel, A. et al. Asymmetry of charge relaxation times in quantum dots: The influence of degeneracy. EPL 106, 47002 (2014).

    Article  ADS  Google Scholar 

  26. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    Article  ADS  Google Scholar 

  27. Hanson, R. et al. Zeeman energy and spin relaxation in a one-electron quantum dot. Phys. Rev. Lett. 91, 196802 (2003).

    Article  ADS  Google Scholar 

  28. Zumbühl, D. M., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Cotunneling spectroscopy in few-electron quantum dots. Phys. Rev. Lett. 93, 256801 (2004).

    Article  ADS  Google Scholar 

  29. Szafran, B., Peeters, F. M., Bednarek, S. & Adamowski, J. In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot. Phys. Rev. B 70, 235335 (2004).

    Article  ADS  Google Scholar 

  30. Mittal, A., Wheeler, R. G., Keller, M. W., Prober, D. E. & Sacks, R. N. Electron–phonon scattering rates in GaAs/AlGaAs 2DEG samples below 0.5 K. Surf. Sci. 361–362, 537–541 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Martinis for a helpful discussion on the interpretation of our measurements. N.H., C.O., S.L., M.S. and J.F. were supported by the Canada Foundation for Innovation, the National Science and Engineering Research Council, CIFAR and SBQMI. S.F., G.C.G. and M.M. were supported by the US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering award no. DE-SC0006671, with additional support from Nokia Bell Laboratories for the MBE facility gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

N.H. and C.O. fabricated the mesoscopic device. GaAs heterostructures and their characterization were provided by S.F., G.C.G. and M.M. S.L. and M.S. worked on early versions of the experiment and provided helpful discussion. N.H. performed measurements and analysed data. The manuscript was written by N.H. and J.F. with additional feedback from all authors.

Corresponding authors

Correspondence to Nikolaus Hartman or Joshua Folk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartman, N., Olsen, C., Lüscher, S. et al. Direct entropy measurement in a mesoscopic quantum system. Nature Phys 14, 1083–1086 (2018). https://doi.org/10.1038/s41567-018-0250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0250-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing