Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topolectrical-circuit realization of topological corner modes


Quantized electric quadrupole insulators have recently been proposed as novel quantum states of matter in two spatial dimensions. Gapped otherwise, they can feature zero-dimensional topological corner mid-gap states protected by the bulk spectral gap, reflection symmetries and a spectral symmetry. Here we introduce a topolectrical circuit design for realizing such corner modes experimentally and report measurements in which the modes appear as topological boundary resonances in the corner impedance profile of the circuit. Whereas the quantized bulk quadrupole moment of an electronic crystal does not have a direct analogue in the classical topolectrical-circuit framework, the corner modes inherit the identical form from the quantum case. Due to the flexibility and tunability of electrical circuits, they are an ideal platform for studying the reflection symmetry-protected character of corner modes in detail. Our work therefore establishes an instance where topolectrical circuitry is employed to bridge the gap between quantum theoretical modelling and the experimental realization of topological band structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrical circuit exhibiting a topological corner state with nodes of the circuit indicated by black dots.
Fig. 2: Comparison of experimental and theoretical results for the circuit spectrum and corner mode.


  1. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    Article  ADS  Google Scholar 

  3. Haldane, F. D. M. Path dependence of the geometric rotation of polarization in optical fibers. Opt. Lett. 11, 730–732 (1986).

    Article  ADS  Google Scholar 

  4. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  5. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  6. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  7. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  8. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Article  Google Scholar 

  9. Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  ADS  Google Scholar 

  10. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  11. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time-and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  12. Albert, V. V., Glazman, L. I. & Jiang, L. Topological properties of linear circuit lattices. Phys. Rev. Lett. 114, 173902 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  13. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  14. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article  ADS  Google Scholar 

  15. Dubček, T. et al. Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

    Article  ADS  Google Scholar 

  16. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rocklin, D. Z., Chen, B. G., Falk, M., Vitelli, V. & Lubensky, T. C. Mechanical Weyl modes in topological Maxwell lattices. Phys. Rev. Lett. 116, 135503 (2016).

    Article  ADS  Google Scholar 

  18. Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

    Article  Google Scholar 

  19. Lee, C. H. et al. Topoelectric circuits. Preprint at (2017).

  20. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Keil, R. et al. Universal sign control of coupling in tight-binding lattices. Phys. Rev. Lett. 116, 213901 (2016).

    Article  ADS  Google Scholar 

  22. Noh, J. et al. Topological protection of photonic mid-gap defect modes.Nat. Photon. 12, 408–415 (2018).

    Article  ADS  Google Scholar 

  23. Lee, C. H., Li, G., Jin, G., Liu, Y. & Zhang, X. Topological dynamics of gyroscopic and Floquet lattices from Newton’s laws. Phys. Rev. B 97, 085110 (2018).

    Article  ADS  Google Scholar 

  24. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    Article  ADS  Google Scholar 

  25. Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).

    Article  ADS  Google Scholar 

  26. Ozawa, T. et al. Topological photonics. Preprint at (2018).

  27. Zhang, F., Kane, C. L. & Mele, E. J. Topological mirror superconductivity. Phys. Rev. Lett. 111, 056403 (2013).

    Article  ADS  Google Scholar 

  28. Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article  Google Scholar 

  29. Fidkowski, L., Jackson, T. & Klich, I. Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions. Phys. Rev. Lett. 107, 036601 (2011).

    Article  ADS  Google Scholar 

  30. Lee, C. H. & Ye, P. Free-fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B 91, 085119 (2015).

    Article  ADS  Google Scholar 

Download references


We thank S. Huber and B. A. Bernevig for discussions. F.S. was supported by the Swiss National Science Foundation. We further acknowledge support by DFG-SFB 1170 TOCOTRONICS (project A07 and B04), by ERC-StG-Thomale- 336012-TOPOLECTRICS, by ERC-AG-3-TOP and by ERC-StG-Neupert-757867-PARATOP.

Author information

Authors and Affiliations



L.M., S.I., T.K., J.B., C.B. and F.B. were responsible for the circuit implementation and all measurements. F.S., S.I. and T.K. performed numerical simulations of the circuit. R.T., M.G., C.H.L., T.N. and F.S. conceived the project and developed the mapping from a Bloch Hamiltonian to topological circuitry.

Corresponding author

Correspondence to Ronny Thomale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

3 pages, 5 figures, 1 reference

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imhof, S., Berger, C., Bayer, F. et al. Topolectrical-circuit realization of topological corner modes. Nature Phys 14, 925–929 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing