Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision spectroscopy of helium in a magic wavelength optical dipole trap

Abstract

Improvements in both theory and frequency metrology of few-electron systems such as hydrogen and helium have enabled increasingly sensitive tests of quantum electrodynamics, as well as ever more accurate determinations of fundamental constants and the size of the nucleus. At the same time, advances in cooling and trapping of neutral atoms have revolutionized the development of increasingly accurate atomic clocks. Here, we combine these fields to reach very high precision on an optical transition in the helium atom by employing a 4He Bose–Einstein condensate confined in a magic wavelength optical dipole trap. The measured transition accurately connects the ortho- and parastates of helium and constitutes a stringent test of quantum electrodynamics theory. In addition, we test polarizability calculations and ultracold scattering properties of the helium atom. Finally, our measurement lays the foundation for a determination of the 3He–4He nuclear charge radius difference with an accuracy exceeding that of muonic helium measurements currently being performed in the context of the proton radius puzzle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Description of the experimental set-up.
Fig. 2: A typical spectroscopy scan.
Fig. 3: Transition frequency measurement.
Fig. 4: Determination of the magic wavelength.

References

  1. Parthey, C. G. et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011).

    ADS  Article  Google Scholar 

  2. Pachucki, K., Patkóš, V. & Yerokhin, V. A. Testing fundamental interactions on the helium atom. Phys. Rev. A. 92, 062510 (2017).

    ADS  Article  Google Scholar 

  3. Mohr, P. J., Taylor, B. N. & Newell, D. B. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).

    ADS  Article  Google Scholar 

  4. Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    ADS  Article  Google Scholar 

  5. Biraben, F. Spectroscopy of atomic hydrogen. How is the Rydberg constant determined? Eur. Phys. J. Spec. Top. 172, 109–119 (2009).

    Article  Google Scholar 

  6. Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014).

    ADS  Article  Google Scholar 

  7. Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010).

    ADS  Article  Google Scholar 

  8. Antognini, A. et al. Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417–420 (2013).

    ADS  Article  Google Scholar 

  9. Beyer, A. et al. The Rydberg constant and proton size from atomic hydrogen. Science 358, 79–85 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  10. Fleurbaey, H. et al. New measurement of the 1S–3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018).

    ADS  Article  Google Scholar 

  11. Pohl, R. et al. Laser spectroscopy of muonic deuterium. Science 353, 669–673 (2016).

    ADS  Article  Google Scholar 

  12. Nebel, T. et al. The Lamb-shift experiment in muonic helium. Hyperfine Interact. 212, 195–201 (2012).

    ADS  Article  Google Scholar 

  13. Kandula, D. Z., Gohle, C., Pinkert, T. J., Ubachs, W. M. G. & Eikema, K. S. E. Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010).

    ADS  Article  Google Scholar 

  14. Hodgman, S. S. et al. Metastable helium: A new determination of the longest atomic excited-state lifetime. Phys. Rev. Lett. 103, 053002 (2009).

    ADS  Article  Google Scholar 

  15. Cancio Pastor, P. et al. Absolute frequency measurements of the 2 3 S 1 → 2 3 P 0,1,2 atomic helium transitions around 1083 nm. Phys. Rev. Lett. 92, 023001 (2004).

    ADS  Article  Google Scholar 

  16. Luo, P.-L., Peng, J.-L., Shy, J.-L. & Wang, L.-B. Precision frequency metrology of helium 2 1 S 0 → 2 1 P 1 transition. Phys. Rev. Lett. 111, 013002 (2013).

    ADS  Article  Google Scholar 

  17. Notermans, R. P. M. J. W. & Vassen, W. High-precision spectroscopy of the forbidden 2 3 S 1 → 2 1 P 1 transition in quantum degenerate metastable helium. Phys. Rev. Lett. 112, 253002 (2014).

    ADS  Article  Google Scholar 

  18. Luo, P.-L. et al. Precision frequency measurements of 3,4He 2 3 P → 3 3 D transitions at 588 nm. Phys. Rev. A. 94, 062507 (2016).

    ADS  Article  Google Scholar 

  19. Zheng, X. et al. Measurement of the frequency of the 2 3 S−2 3 P transition of 4He. Phys. Rev. Lett. 119, 263002 (2017).

    ADS  Article  Google Scholar 

  20. Huang, Y.-J. et al. Frequency measurement of the 2 1 S 0−3 1 D 2 two-photon transition in atomic 4He. Phys. Rev. A. 97, 032516 (2018).

    ADS  Article  Google Scholar 

  21. Borbely, J. S. et al. Separated oscillatory-field microwave measurement of the 2 3 P 1−2 3 P 2 fine-structure interval of atomic helium. Phys. Rev. A. 79, 060503(R) (2009).

    ADS  Article  Google Scholar 

  22. Smiciklas, M. & Shiner, D. Determination of the fine structure constant using helium fine structure. Phys. Rev. Lett. 105, 123001 (2010).

    ADS  Article  Google Scholar 

  23. Zheng, X. et al. Laser spectroscopy of the fine-structure splitting in the 2 3 P J levels of 4He. Phys. Rev. Lett. 118, 063001 (2017).

    ADS  Article  Google Scholar 

  24. Marsman, A., Horbatsch, M. & Hessels, E. A. Quantum interference effects in saturated absorption spectroscopy of n = 2 triplet helium fine structure. Phys. Rev. A. 91, 062506 (2015).

    ADS  Article  Google Scholar 

  25. Wang, L.-B. et al. Laser spectroscopic determination of the 6He nuclear charge radius. Phys. Rev. Lett. 93, 142501 (2004).

    ADS  Article  Google Scholar 

  26. Mueller, P. et al. Nuclear charge radius of 8He. Phys. Rev. Lett. 99, 252501 (2007).

    ADS  Article  Google Scholar 

  27. Shiner, D., Dixson, R. & Vedantham, V. Three-nucleon charge radius: A precise laser determination using 3He. Phys. Rev. Lett. 74, 3553–3556 (1995).

    ADS  Article  Google Scholar 

  28. Cancio Pastor, P. et al. Frequency metrology of helium around 1083 nm and determination of the nuclear charge radius. Phys. Rev. Lett. 108, 143001 (2012).

    ADS  Article  Google Scholar 

  29. van Rooij, R. et al. Frequency metrology in quantum degenerate helium: Direct measurement of the 2 3 S 1 → 2 1 S 0 transition. Science 333, 196–198 (2011).

    ADS  Article  Google Scholar 

  30. Sick, I. Zemach moments of 3He and 4He. Phys. Rev. C. 90, 064002 (2014).

    ADS  Article  Google Scholar 

  31. Notermans, R. P. M. J. W., Rengelink, R. J., van Leeuwen, K. A. H. & Vassen, W. Magic wavelengths for the 2 3 S → 2 1 S transition in helium. Phys. Rev. A. 90, 052508 (2014).

    ADS  Article  Google Scholar 

  32. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS  Article  Google Scholar 

  33. Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    ADS  Article  Google Scholar 

  34. Ludlow, A., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Article  Google Scholar 

  35. Mitroy, J. & Tang, L.-Y. Tune-out wavelengths for metastable helium. Phys. Rev. A. 88, 052515 (2013).

    ADS  Article  Google Scholar 

  36. Zhang, Y.-H., Tang, L.-Y., Zhang, X.-Z. & Shi, T.-Y. Tune-out wavelength around 413 nm for the helium 2 3 S 1 state including relativistic and finite-nuclear-mass corrections. Phys. Rev. A. 93, 052516 (2016).

    ADS  Article  Google Scholar 

  37. Henson, B. M. et al. Precision measurement for metastable helium atoms of the 413 nm tune-out wavelength at which the atomic polarizability vanishes. Phys. Rev. Lett. 115, 043004 (2015).

    ADS  Article  Google Scholar 

  38. Wu, F.-F. et al. Relativistic full-configuration-interaction calculations of magic wavelengths for the 2 3 S 1 → 2 1 S 0 transition of helium isotopes. Preprint at https://arXiv.org/abs/1804.01218 (2018).

  39. Fried, D. G. et al. Bose–Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).

    ADS  Article  Google Scholar 

  40. Killian, T. C. et al. Cold collision frequency shift of the 1S–2S transition in hydrogen. Phys. Rev. Lett. 81, 3807–3810 (1998).

    ADS  Article  Google Scholar 

  41. Killian, T. C. 1S–2S spectrum of a hydrogen Bose–Einstein condensate. Phys. Rev. A. 61, 033611 (2000).

    ADS  Article  Google Scholar 

  42. Notermans, R. P. M. J. W., Rengelink, R. J. & Vassen, W. Comparison of spectral linewidths for quantum degenerate bosons and fermions. Phys. Rev. Lett. 117, 213001 (2016).

    ADS  Article  Google Scholar 

  43. Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).

    ADS  Article  Google Scholar 

  44. Rengelink, R. J., Notermans, R. P. M. J. W. & Vassen, W. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength. Appl. Phys. B 122, 122 (2016).

    ADS  Article  Google Scholar 

  45. Moal, S. et al. Accurate determination of the scattering length of metastable helium atoms using dark resonances between atoms and exotic molecules. Phys. Rev. Lett. 96, 023203 (2006).

    ADS  Article  Google Scholar 

  46. Müller, M. W. et al. Experimental and theoretical studies of the Bi-excited collision systems He* (2 3 S) + He*(2 3 S, 2 1 S) at thermal and subthermal kinetic energies. Z. Phys. D 21, 89–112 (1991).

    ADS  Article  Google Scholar 

  47. Morton, D. C., Wu, Q. & Drake, G. W. F. Energy levels for the stable isotopes of atomic helium (4He I and 3He I). Can. J. Phys. 84, 83–105 (2006).

    ADS  Article  Google Scholar 

  48. Diepold, M. et al. Theory of the Lamb shift and fine structure in muonic 4He ions and the muonic 3He–4He isotope shift. Preprint at https://arXiv.org/abs/1606.05231v2 (2017).

  49. Borbely, J. S., van Rooij, R., Knoop, S. & Vassen, W. Magnetic-field-dependent trap loss of ultracold metastable helium. Phys. Rev. A. 85, 022706 (2012).

    ADS  Article  Google Scholar 

  50. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    ADS  Article  Google Scholar 

  51. Circular T bulletins 358–360 BIPM https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html (2017).

Download references

Acknowledgements

We would like to thank R. van der Beek for useful discussions and a critical reading of the manuscript, D. Cocks and I. Whittingham for helpful discussions, and R. Kortekaas for technical support. We gratefully acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

R.J.R. and R.P.M.J.W.N. constructed the experimental set-up. R.J.R., Y.v.d.W. and M.D.H. performed the measurements. R.J.R., Y.v.d.W. and R.J. investigated systematic effects. R.J.R. performed the data analysis. R.J.R., R.P.M.J.W.N. and K.S.E.E. performed and discussed the frequency metrology. W.V. initiated and supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to W. Vassen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figures S1, Table S1, and References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rengelink, R.J., van der Werf, Y., Notermans, R.P.M.J.W. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nature Phys 14, 1132–1137 (2018). https://doi.org/10.1038/s41567-018-0242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0242-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing