Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A passive photon–atom qubit swap operation


Deterministic quantum interactions between single photons and single quantum emitters are a vital building block towards the distribution of quantum information between remote systems1,2,3,4. Deterministic photon–atom state transfer has previously been demonstrated with protocols that include active feedback or synchronized control pulses5,6,7,8,9,10. Here we demonstrate a passive swap operation between the states of a single photon and a single atom. The underlying mechanism is single-photon Raman interaction11,12,13,14,15—an interference-based scheme that leads to deterministic interaction between two photonic modes and the two ground states of a Λ-system. Using a nanofibre-coupled microsphere resonator coupled to single Rb atoms, we swap a photonic qubit into the atom and back, demonstrating fidelities exceeding the classical threshold of 2/3 in both directions. In this simultaneous write and read process, the returning photon, which carries the readout of the atomic qubit, also heralds the successful arrival of the write photon. Requiring no control fields, this single-step gate takes place automatically at the timescale of the atom’s cavity-enhanced spontaneous emission. Applicable to any waveguide-coupled Λ-system, this mechanism, which can also be harnessed to construct universal gates16,17, provides a versatile building block for the modular scaling up of quantum information systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The SPRINT scheme and experimental apparatus.
Fig. 2: Experimental results for the atom-to-photon swap process in two configurations.
Fig. 3: Measurement of the photon–atom–photon double-swap fidelity.
Fig. 4: Inferred photon-to-atom swap fidelity, presented for a perfect single-photon input qubit.


  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).

    Article  ADS  Google Scholar 

  3. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  4. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  5. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  6. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  7. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  8. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  ADS  Google Scholar 

  9. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article  ADS  Google Scholar 

  10. Kalb, N., Reiserer, A., Ritter, S. & Rempe, G. Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114, 220501 (2015).

    Article  ADS  Google Scholar 

  11. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  ADS  Google Scholar 

  12. Inomata, K. et al. Microwave down-conversion with an impedance-matched Λ system in driven circuit QED. Phys. Rev. Lett. 113, 63604 (2014).

    Article  ADS  Google Scholar 

  13. Rosenblum, S. et al. Extraction of a single photon from an optical pulse. Nat. Photon. 10, 19–22 (2016).

    Article  ADS  Google Scholar 

  14. Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

    Article  ADS  Google Scholar 

  15. Rosenblum, S., Borne, A. & Dayan, B. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction. Phys. Rev. A 95, 33814 (2017).

    Article  ADS  Google Scholar 

  16. Koshino, K., Ishizaka, S. & Nakamura, Y. Deterministic photon-photon √SWAP gate using a Λ system. Phys. Rev. A 82, 10301 (2010).

    Article  ADS  Google Scholar 

  17. Koshino, K. et al. Tunable quantum gate between a superconducting atom and a propagating microwave photon. Phys. Rev. Appl. 7, 064006 (2016).

    Article  ADS  Google Scholar 

  18. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  19. Gao, W. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article  Google Scholar 

  20. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P. & Furusawa, A. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013).

    Article  ADS  Google Scholar 

  21. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, Oxford, 2006).

  22. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  23. Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

    Article  ADS  Google Scholar 

  24. Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    Article  ADS  Google Scholar 

  25. Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 93603 (2008).

    Article  ADS  Google Scholar 

  26. Lin, G. W., Zou, X. B., Lin, X. M. & Guo, G. C. Heralded quantum memory for single-photon polarization qubits. EPL 86, 30006 (2009).

    Article  ADS  Google Scholar 

  27. Bradford, M. & Shen, J.-T. Single-photon frequency conversion by exploiting quantum interference. Phys. Rev. A 85, 43814 (2012).

    Article  ADS  Google Scholar 

  28. Gea-Banacloche, J. & Wilson, W. Photon subtraction and addition by a three-level atom in an optical cavity. Phys. Rev. A 88, 33832 (2013).

    Article  ADS  Google Scholar 

  29. Junge, C., O’Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    Article  ADS  Google Scholar 

  30. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  31. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    Article  ADS  Google Scholar 

  32. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  33. Tokunaga, Y. & Koshino, K. A photon–photon controlled-phase gate using a Λ system. in European Quantum Electronics Conf. Proc. EB_P_7 (Optical Society of America, 2015).

Download references


Support from the Israeli Science Foundation, the Minerva Foundation and the Crown Photonics Center is acknowledged. This research was made possible in part by the historic generosity of the Harold Perlman family.

Author information

Authors and Affiliations



All authors contributed to the carrying out of the experiment, discussed the results and commented on the manuscript. O.B. and A.B. analysed the data. O.B., A.B., S.R. and B.D. contributed to the design and construction of the experimental set-up. O.B., A.B., S.R. and B.D. wrote the manuscript. O.B., A.B. and S.R. contributed equally to this work.

Corresponding author

Correspondence to Barak Dayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechler, O., Borne, A., Rosenblum, S. et al. A passive photon–atom qubit swap operation. Nature Phys 14, 996–1000 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing