Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked kagome lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the considerably enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1,130 Ω−1 cm−1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the kagome-lattice structure and the long-range out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

  2. 2.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

  3. 3.

    Haldane, F. D. M. Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

  4. 4.

    Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

  5. 5.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

  6. 6.

    Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  7. 7.

    Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

  8. 8.

    Weng, H. M., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

  9. 9.

    Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

  10. 10.

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

  11. 11.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  12. 12.

    Fang, C., Gilbert, M. J. & Bernevig, B. A. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014).

  13. 13.

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

  14. 14.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  15. 15.

    Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

  16. 16.

    Wang, X., Vanderbilt, D., Yates, J. R. & Souza, I. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B 76, 195109 (2007).

  17. 17.

    Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

  18. 18.

    Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  19. 19.

    Xu, G., Weng, H. M., Wang, Z. J., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

  20. 20.

    Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

  21. 21.

    Wang, Z. J. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

  22. 22.

    Chang, G. Q. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

  23. 23.

    Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

  24. 24.

    Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

  25. 25.

    Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the Kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

  26. 26.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

  27. 27.

    Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: Structure and type-antitype relations of Shandites M3/2AS (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

  28. 28.

    Weihrich, R. & Anusca, I. Half antiperovskites. III - Crystallographic and electronic structure effects in Sn2-xInxCo3S2. Z. Anorg. Allg. Chem. 632, 1531–1537 (2006).

  29. 29.

    Vaqueiro, P. & Sobany, G. G. A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2. Solid State Sci. 11, 513–518 (2009).

  30. 30.

    Schnelle, W. et al. Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the Shandite-type structure. Phys. Rev. B 88, 144404 (2013).

  31. 31.

    Dedkov, Y. S., Holder, M., Molodtsov, S. L. & Rosner, H. Electronic structure of shandite Co3Sn2S2. J. Phys. Conf. Ser. 100, 072011 (2008).

  32. 32.

    Holder, M. et al. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Phys. Rev. B 79, 205116 (2009).

  33. 33.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

  34. 34.

    Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

  35. 35.

    Ziman, J. M. Electrons and Phonons: Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960).

  36. 36.

    Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

  37. 37.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  38. 38.

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

  39. 39.

    Onoda, S., Sugimoto, N. & Nagaosa, N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys. Rev. Lett. 97, 126602 (2006).

  40. 40.

    Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

  41. 41.

    Yue, D. & Jin, X. Towards a better understanding of the anomalous Hall effect. J. Phys. Soc. Jpn 86, 011006 (2016).

  42. 42.

    Gantmakher, V. F. The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317–362 (1974).

  43. 43.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

  44. 44.

    Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

  45. 45.

    Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: Photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

  46. 46.

    Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

  47. 47.

    Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

  48. 48.

    Yang, B.-J., Moon, E.-G., Isobe, H., & Nagaosa, N. Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems. Nat. Phys. 10, 774–778 (2014).

  49. 49.

    Kurebayashi, D. & Nomura, K. Voltage-driven magnetization switching and spin pumping in Weyl semimetals. Phys. Rev. Appl. 6, 044013 (2016).

  50. 50.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

  51. 51.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  52. 52.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  53. 53.

    Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

Download references


This work was financially supported by the European Research Council (ERC) Advanced Grant (No. 291472) ‘IDEA Heusler!’ and ERC Advanced Grant (No. 742068) ‘TOPMAT’. E.L. acknowledges support from the Alexander von Humboldt Foundation of Germany for his Fellowship and from the National Natural Science Foundation of China for his Excellent Young Scholarship (No. 51722106).

Author information


  1. Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

    • Enke Liu
    • , Yan Sun
    • , Nitesh Kumar
    • , Aili Sun
    • , Lin Jiao
    • , Qiunan Xu
    • , Johannes Kroder
    • , Vicky Süß
    • , Horst Borrmann
    • , Chandra Shekhar
    • , Walter Schnelle
    • , Steffen Wirth
    •  & Claudia Felser
  2. Institute of Physics, Chinese Academy of Sciences, Beijing, China

    • Enke Liu
    •  & Wenhong Wang
  3. Department of Chemistry, Princeton University, Princeton, NJ, USA

    • Lukas Muechler
  4. Max Planck Institute of Microstructure Physics, Halle, Germany

    • Shuo-Ying Yang
    •  & Defa Liu
  5. School of Physical Science and Technology, ShanghaiTech University, Shanghai, China

    • Aiji Liang
    •  & Yulin Chen
  6. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Aiji Liang
  7. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China

    • Zhaosheng Wang
    •  & Chuanying Xi
  8. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK

    • Yulin Chen
  9. Institut für Festkörper- und Material Physik, Technische Universität Dresden, Dresden, Germany

    • Sebastian T. B. Goennenwein


  1. Search for Enke Liu in:

  2. Search for Yan Sun in:

  3. Search for Nitesh Kumar in:

  4. Search for Lukas Muechler in:

  5. Search for Aili Sun in:

  6. Search for Lin Jiao in:

  7. Search for Shuo-Ying Yang in:

  8. Search for Defa Liu in:

  9. Search for Aiji Liang in:

  10. Search for Qiunan Xu in:

  11. Search for Johannes Kroder in:

  12. Search for Vicky Süß in:

  13. Search for Horst Borrmann in:

  14. Search for Chandra Shekhar in:

  15. Search for Zhaosheng Wang in:

  16. Search for Chuanying Xi in:

  17. Search for Wenhong Wang in:

  18. Search for Walter Schnelle in:

  19. Search for Steffen Wirth in:

  20. Search for Yulin Chen in:

  21. Search for Sebastian T. B. Goennenwein in:

  22. Search for Claudia Felser in:


The project was conceived by E.L. and C.F. Single crystals were grown by E.L., who performed the structural, magnetic and transport measurements with assistance from A.S., J.K., S.Y., V.S., H.B., N.K. and W.S. The STM characterizations were performed by L.J. and S.W. The ARPES measurements were conducted by D.L., A.L. and Y.C. The static high-magnetic-field measurements were performed and analysed by Z.W., C.X., N.K., C.S. and L.J. The theoretical calculations were carried out by Y.S., L.M., Q.X. and E.L. All the authors discussed the results. The paper was written by E.L., Y.S. and S.T.B.G. with feedback from all the authors. The project was supervised by C.F.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Enke Liu or Yan Sun or Claudia Felser.

Supplementary information

  1. Supplementary information

    Supplementary figures S1 to S15, Supplementary tables S1 to S4, Supplementary references 1 to 31

About this article

Publication history