Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal

Abstract

Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked kagome lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the considerably enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1,130 Ω−1 cm−1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the kagome-lattice structure and the long-range out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal and electronic structures of Co3Sn2S2 and the measured electric resistivity.
Fig. 2: Theoretical calculations of the Berry curvature and anomalous Hall conductivity.
Fig. 3: Chiral-anomaly-induced negative magnetoresistance.
Fig. 4: Transport measurements of the AHE.
Fig. 5: Transport measurements of the anomalous Hall angle.

Similar content being viewed by others

References

  1. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  2. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  Google Scholar 

  3. Haldane, F. D. M. Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

    Article  ADS  Google Scholar 

  4. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  5. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  6. Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  7. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  ADS  Google Scholar 

  8. Weng, H. M., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

    Article  ADS  Google Scholar 

  9. Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article  ADS  Google Scholar 

  10. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  11. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  12. Fang, C., Gilbert, M. J. & Bernevig, B. A. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014).

    Article  ADS  Google Scholar 

  13. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article  ADS  Google Scholar 

  14. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  15. Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

    Article  ADS  Google Scholar 

  16. Wang, X., Vanderbilt, D., Yates, J. R. & Souza, I. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B 76, 195109 (2007).

    Article  ADS  Google Scholar 

  17. Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article  ADS  Google Scholar 

  18. Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  19. Xu, G., Weng, H. M., Wang, Z. J., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  20. Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    Article  ADS  Google Scholar 

  21. Wang, Z. J. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article  ADS  Google Scholar 

  22. Chang, G. Q. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    Article  ADS  Google Scholar 

  23. Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    Article  Google Scholar 

  24. Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article  ADS  Google Scholar 

  25. Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the Kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article  ADS  Google Scholar 

  26. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  ADS  Google Scholar 

  27. Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: Structure and type-antitype relations of Shandites M3/2AS (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article  Google Scholar 

  28. Weihrich, R. & Anusca, I. Half antiperovskites. III - Crystallographic and electronic structure effects in Sn2-xInxCo3S2. Z. Anorg. Allg. Chem. 632, 1531–1537 (2006).

    Article  Google Scholar 

  29. Vaqueiro, P. & Sobany, G. G. A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2. Solid State Sci. 11, 513–518 (2009).

    Article  ADS  Google Scholar 

  30. Schnelle, W. et al. Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the Shandite-type structure. Phys. Rev. B 88, 144404 (2013).

    Article  ADS  Google Scholar 

  31. Dedkov, Y. S., Holder, M., Molodtsov, S. L. & Rosner, H. Electronic structure of shandite Co3Sn2S2. J. Phys. Conf. Ser. 100, 072011 (2008).

    Article  Google Scholar 

  32. Holder, M. et al. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Phys. Rev. B 79, 205116 (2009).

    Article  ADS  Google Scholar 

  33. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  34. Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    Article  ADS  Google Scholar 

  35. Ziman, J. M. Electrons and Phonons: Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960).

  36. Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

    Article  ADS  Google Scholar 

  37. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  38. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  39. Onoda, S., Sugimoto, N. & Nagaosa, N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys. Rev. Lett. 97, 126602 (2006).

    Article  ADS  Google Scholar 

  40. Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article  ADS  Google Scholar 

  41. Yue, D. & Jin, X. Towards a better understanding of the anomalous Hall effect. J. Phys. Soc. Jpn 86, 011006 (2016).

    Article  ADS  Google Scholar 

  42. Gantmakher, V. F. The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317–362 (1974).

    Article  ADS  Google Scholar 

  43. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  Google Scholar 

  44. Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

    Article  ADS  Google Scholar 

  45. Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: Photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Article  ADS  Google Scholar 

  46. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  47. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Article  Google Scholar 

  48. Yang, B.-J., Moon, E.-G., Isobe, H., & Nagaosa, N. Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems. Nat. Phys. 10, 774–778 (2014).

    Article  Google Scholar 

  49. Kurebayashi, D. & Nomura, K. Voltage-driven magnetization switching and spin pumping in Weyl semimetals. Phys. Rev. Appl. 6, 044013 (2016).

    Article  ADS  Google Scholar 

  50. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  53. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (ERC) Advanced Grant (No. 291472) ‘IDEA Heusler!’ and ERC Advanced Grant (No. 742068) ‘TOPMAT’. E.L. acknowledges support from the Alexander von Humboldt Foundation of Germany for his Fellowship and from the National Natural Science Foundation of China for his Excellent Young Scholarship (No. 51722106).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by E.L. and C.F. Single crystals were grown by E.L., who performed the structural, magnetic and transport measurements with assistance from A.S., J.K., S.Y., V.S., H.B., N.K. and W.S. The STM characterizations were performed by L.J. and S.W. The ARPES measurements were conducted by D.L., A.L. and Y.C. The static high-magnetic-field measurements were performed and analysed by Z.W., C.X., N.K., C.S. and L.J. The theoretical calculations were carried out by Y.S., L.M., Q.X. and E.L. All the authors discussed the results. The paper was written by E.L., Y.S. and S.T.B.G. with feedback from all the authors. The project was supervised by C.F.

Corresponding authors

Correspondence to Enke Liu, Yan Sun or Claudia Felser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary figures S1 to S15, Supplementary tables S1 to S4, Supplementary references 1 to 31

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, E., Sun, Y., Kumar, N. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nature Phys 14, 1125–1131 (2018). https://doi.org/10.1038/s41567-018-0234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0234-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing