Enhanced high-harmonic generation from an all-dielectric metasurface

Article metrics


The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high damage thresholds and strong enhancement of the driving field, making them attractive platforms to control high harmonics and other high-field processes at the nanoscale. Here we report enhanced non-perturbative high-harmonic emission from a Fano-resonant Si metasurface that possesses a classical analogue of electromagnetically induced transparency. The harmonic emission is enhanced by more than two orders of magnitude compared to unpatterned samples. The enhanced high harmonics are highly anisotropic with respect to the excitation polarization and are selective by the excitation wavelength due to its resonant features. By combining nanofabrication technology and ultrafast strong-field physics, our work paves the way for the design of new compact ultrafast photonic devices that operate under high intensities and at short wavelengths.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Working principle of the metasurface and resonance characterization.
Fig. 2: High-harmonic spectra from a Si metasurface.
Fig. 3: Dependence of non-perturbative high-harmonic yield on excitation intensity.
Fig. 4: Dependence of the high-harmonic spectra on the excitation wavelength.


  1. 1.

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

  2. 2.

    Vampa, G., Fattahi, H., Vučković, J. & Krausz, F. Nonlinear optics: Attosecond nanophotonics. Nat. Photon. 11, 210–212 (2017).

  3. 3.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

  4. 4.

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

  5. 5.

    Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

  6. 6.

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

  7. 7.

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

  8. 8.

    Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

  9. 9.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2016).

  10. 10.

    You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

  11. 11.

    Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

  12. 12.

    Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017).

  13. 13.

    Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal–sapphire nanostructure. Nat. Commun. 7, 13105 (2016).

  14. 14.

    Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

  15. 15.

    Liu, S. et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

  16. 16.

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

  17. 17.

    Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

  18. 18.

    Stockman, M. I. Nanoplasmonics: The physics behind the applications. Phys. Today 64, 39–44 (February, 2011).

  19. 19.

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

  20. 20.

    Boller, K., Imamolu, A. & Harris, S. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

  21. 21.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

  22. 22.

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

  23. 23.

    Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

  24. 24.

    Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

  25. 25.

    Pfullmann, N. et al. Nano-antenna-assisted harmonic generation. Appl. Phys. B 113, 75–79 (2013).

  26. 26.

    You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

  27. 27.

    Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: A paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2017).

  28. 28.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  29. 29.

    Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

  30. 30.

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

  31. 31.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

  32. 32.

    Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

  33. 33.

    Sandhu, S., Povinelli, M. L. & Fan, S. Enhancing optical switching with coherent control. Appl. Phys. Lett. 96, 3–5 (2010).

  34. 34.

    Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

  35. 35.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  36. 36.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

Download references


This project was supported primarily by the Air Force Office of Scientific Research under grant no. FA9550-14-1-0108. We thank S.Ghimire and J.Lu for technical support.

Author information

H.L. and C.G. contributed equally to this work. H.L. conceived the experiment. C.G. and M.X. performed FDTD simulations. H.L. and J.L.Z. fabricated the device. H.L. and G.V. performed the HHG measurement under the supervision of D.A.R. H.L., C.G, T.S., and J.L.Z. characterized the resonance. All authors contributed to the discussion and preparation of the manuscript.

Correspondence to Hanzhe Liu or David A. Reis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

5 pages, 2 figures, 2 references

Supplementary Movie

11:24 min duration

Supplementary Movie

13:49 min duration

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Guo, C., Vampa, G. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nature Phys 14, 1006–1010 (2018) doi:10.1038/s41567-018-0233-6

Download citation

Further reading