Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase-controlled coherent dynamics of a single spin under closed-contour interaction


In three-level quantum systems, interference between two simultaneously driven excitation pathways can give rise to effects such as coherent population trapping1,2 and electromagnetically induced transparency3. The possibility to exploit these effects has made three-level systems a cornerstone of quantum optics. Coherent driving of the third available transition forms a closed-contour interaction (CCI), which yields fundamentally new phenomena, including phase-controlled coherent population trapping4,5 and phase-controlled coherent population dynamics6. Despite attractive prospects, prevalent dephasing in experimental systems suitable for CCI driving has made its observation elusive7,8,9,10. Here, we exploit recently developed methods for coherent manipulation of nitrogen–vacancy electronic spins to implement and study highly coherent CCI driving of a single spin. Our experiments reveal phase-controlled quantum interference, reminiscent of electron dynamics on a closed loop threaded by a magnetic flux, which we synthesize from the driving-field phase11. Owing to the nature of the dressed states created under CCI, we achieve nearly two orders of magnitude improvement of the dephasing times, even for moderate drive strengths. CCI driving constitutes a novel approach to coherent control of few-level systems, with potential for applications in quantum sensing or quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CCI scheme and experimental set-up.
Fig. 2: Time-reversal symmetry breaking in closed-contour spin dynamics controlled by global phase Φ.
Fig. 3: Spectrum of the driven NV spin under closed-contour driving.
Fig. 4: Phase-controlled coherence protection.

Similar content being viewed by others


  1. Gray, H. R., Whitley, R. M. & Stroud, C. R. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).

    Article  ADS  Google Scholar 

  2. Agap’ev, B. D., Gorny, M. B., Matisov, B. G. & Rozhdestvenski, Y. V. Coherent population trapping in quantum systems. Phys.-Uspekhi 36, 763–793 (1993).

    Article  ADS  Google Scholar 

  3. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  4. Kosachiov, D. V., Matisov, B. G. & Rozhdestvensky, Y. V. Coherent phenomena in multilevel systems with closed interaction contour. J. Phys. B 25, 2473–2488 (1992).

    Article  ADS  Google Scholar 

  5. Windholz, L. Coherent population trapping in multi-level atomic systems. Phys. Scr. 2001, 81–91 (2001).

    Article  Google Scholar 

  6. Buckle, S., Barnett, S., Knight, P., Lauder, M. & Pegg, D. Atomic interferometers. Opt. Acta 33, 1129–1140 (1986).

    Article  ADS  Google Scholar 

  7. Yamamoto, K., Ichimura, K. & Gemma, N. Enhanced and reduced absorptions via quantum interference: Solid system driven by a rf field. Phys. Rev. A 58, 2460–2466 (1998).

    Article  ADS  Google Scholar 

  8. Korsunsky, E. A., Leinfellner, N., Huss, A., Baluschev, S. & Windholz, L. Phase-dependent electromagnetically induced transparency. Phys. Rev. A 59, 2302–2305 (1999).

    Article  ADS  Google Scholar 

  9. Li, H. et al. Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 023820 (2009).

    Article  ADS  Google Scholar 

  10. Preethi, T. M. et al. Phase-sensitive microwave optical double resonance in an N system. EPL Europhys. Lett. 95, 34005 (2011).

    Article  ADS  Google Scholar 

  11. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article  Google Scholar 

  12. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  13. Vanier, J. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421–442 (2005).

    Article  ADS  Google Scholar 

  14. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  15. Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

  16. Shore, B. W. Manipulating Quantum Structures Using Laser Pulses (Cambridge Univ. Press, Cambridge, 2011)

  17. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  18. Doherty, M. W. et al. The nitrogen–vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  19. Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    Article  Google Scholar 

  20. Dobrovitski, V., Fuchs, G., Falk, A., Santori, C. & Awschalom, D. Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23–50 (2013).

    Article  ADS  Google Scholar 

  21. MacQuarrie, E. R. et al. Coherent control of a nitrogen–vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

    Article  Google Scholar 

  22. Cai, J.-M. et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. Xu, X. et al. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).

    Article  ADS  Google Scholar 

  24. MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A. & Fuchs, G. D. Continuous dynamical decoupling of a single diamond nitrogen–vacancy center spin with a mechanical resonator. Phys. Rev. B 92, 224419 (2015).

    Article  ADS  Google Scholar 

  25. Acosta, V. M. et al. Temperature dependence of the nitrogen–vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    Article  ADS  Google Scholar 

  26. Joas, T., Waeber, A. M., Braunbeck, G. & Reinhard, F. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy. Nat. Commun. 8, 964 (2017).

    Article  ADS  Google Scholar 

  27. Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

    Article  ADS  Google Scholar 

  28. Abobeih, M. H., One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

  29. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

Download references


We thank A. Retzker, N. Aharon, A. Nunnenkamp and H. Ribeiro for fruitful discussions and valuable input. We gratefully acknowledge financial support through the NCCR QSIT, a competence centre funded by the Swiss NSF, through the Swiss Nanoscience Institute, by the EU FP7 project DIADEMS (grant no. 611143) and through SNF Project Grant 169321.

Author information

Authors and Affiliations



A.B., J.T. and P.M conceived the experiment. A.B. and J.K. performed the experiment and analysed the data, together with M.K. and P.M.. L.T. and J.T. provided support in measurement software. A.B. and M.K. performed the theoretical modelling of our data. A.B., M.K. and P.M. wrote the paper.

Corresponding author

Correspondence to Patrick Maletinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barfuss, A., Kölbl, J., Thiel, L. et al. Phase-controlled coherent dynamics of a single spin under closed-contour interaction. Nature Phys 14, 1087–1091 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing