Phase-controlled coherent dynamics of a single spin under closed-contour interaction


In three-level quantum systems, interference between two simultaneously driven excitation pathways can give rise to effects such as coherent population trapping1,2 and electromagnetically induced transparency3. The possibility to exploit these effects has made three-level systems a cornerstone of quantum optics. Coherent driving of the third available transition forms a closed-contour interaction (CCI), which yields fundamentally new phenomena, including phase-controlled coherent population trapping4,5 and phase-controlled coherent population dynamics6. Despite attractive prospects, prevalent dephasing in experimental systems suitable for CCI driving has made its observation elusive7,8,9,10. Here, we exploit recently developed methods for coherent manipulation of nitrogen–vacancy electronic spins to implement and study highly coherent CCI driving of a single spin. Our experiments reveal phase-controlled quantum interference, reminiscent of electron dynamics on a closed loop threaded by a magnetic flux, which we synthesize from the driving-field phase11. Owing to the nature of the dressed states created under CCI, we achieve nearly two orders of magnitude improvement of the dephasing times, even for moderate drive strengths. CCI driving constitutes a novel approach to coherent control of few-level systems, with potential for applications in quantum sensing or quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The CCI scheme and experimental set-up.
Fig. 2: Time-reversal symmetry breaking in closed-contour spin dynamics controlled by global phase Φ.
Fig. 3: Spectrum of the driven NV spin under closed-contour driving.
Fig. 4: Phase-controlled coherence protection.


  1. 1.

    Gray, H. R., Whitley, R. M. & Stroud, C. R. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).

    ADS  Article  Google Scholar 

  2. 2.

    Agap’ev, B. D., Gorny, M. B., Matisov, B. G. & Rozhdestvenski, Y. V. Coherent population trapping in quantum systems. Phys.-Uspekhi 36, 763–793 (1993).

    ADS  Article  Google Scholar 

  3. 3.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    Kosachiov, D. V., Matisov, B. G. & Rozhdestvensky, Y. V. Coherent phenomena in multilevel systems with closed interaction contour. J. Phys. B 25, 2473–2488 (1992).

    ADS  Article  Google Scholar 

  5. 5.

    Windholz, L. Coherent population trapping in multi-level atomic systems. Phys. Scr. 2001, 81–91 (2001).

    Article  Google Scholar 

  6. 6.

    Buckle, S., Barnett, S., Knight, P., Lauder, M. & Pegg, D. Atomic interferometers. Opt. Acta 33, 1129–1140 (1986).

    ADS  Article  Google Scholar 

  7. 7.

    Yamamoto, K., Ichimura, K. & Gemma, N. Enhanced and reduced absorptions via quantum interference: Solid system driven by a rf field. Phys. Rev. A 58, 2460–2466 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    Korsunsky, E. A., Leinfellner, N., Huss, A., Baluschev, S. & Windholz, L. Phase-dependent electromagnetically induced transparency. Phys. Rev. A 59, 2302–2305 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    Li, H. et al. Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 023820 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Preethi, T. M. et al. Phase-sensitive microwave optical double resonance in an N system. EPL Europhys. Lett. 95, 34005 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article  Google Scholar 

  12. 12.

    Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    Vanier, J. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421–442 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Article  Google Scholar 

  15. 15.

    Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

  16. 16.

    Shore, B. W. Manipulating Quantum Structures Using Laser Pulses (Cambridge Univ. Press, Cambridge, 2011)

  17. 17.

    Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  18. 18.

    Doherty, M. W. et al. The nitrogen–vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    Article  Google Scholar 

  20. 20.

    Dobrovitski, V., Fuchs, G., Falk, A., Santori, C. & Awschalom, D. Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23–50 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    MacQuarrie, E. R. et al. Coherent control of a nitrogen–vacancy center spin ensemble with a diamond mechanical resonator. Optica 2, 233–238 (2015).

    Article  Google Scholar 

  22. 22.

    Cai, J.-M. et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Xu, X. et al. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A. & Fuchs, G. D. Continuous dynamical decoupling of a single diamond nitrogen–vacancy center spin with a mechanical resonator. Phys. Rev. B 92, 224419 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Acosta, V. M. et al. Temperature dependence of the nitrogen–vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Joas, T., Waeber, A. M., Braunbeck, G. & Reinhard, F. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy. Nat. Commun. 8, 964 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Stark, A. et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 8, 1105 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Abobeih, M. H., One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

  29. 29.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

Download references


We thank A. Retzker, N. Aharon, A. Nunnenkamp and H. Ribeiro for fruitful discussions and valuable input. We gratefully acknowledge financial support through the NCCR QSIT, a competence centre funded by the Swiss NSF, through the Swiss Nanoscience Institute, by the EU FP7 project DIADEMS (grant no. 611143) and through SNF Project Grant 169321.

Author information




A.B., J.T. and P.M conceived the experiment. A.B. and J.K. performed the experiment and analysed the data, together with M.K. and P.M.. L.T. and J.T. provided support in measurement software. A.B. and M.K. performed the theoretical modelling of our data. A.B., M.K. and P.M. wrote the paper.

Corresponding author

Correspondence to Patrick Maletinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barfuss, A., Kölbl, J., Thiel, L. et al. Phase-controlled coherent dynamics of a single spin under closed-contour interaction. Nature Phys 14, 1087–1091 (2018).

Download citation

Further reading