Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal


In conducting ferromagnets, an anomalous Nernst effect—the generation of an electric voltage perpendicular to both the magnetization and an applied temperature gradient—can be driven by the nontrivial geometric structure, or Berry curvature, of the wavefunction of the electrons1,2. Here, we report the observation of a giant anomalous Nernst effect at room temperature in the full-Heusler ferromagnet Co2MnGa, an order of magnitude larger than the previous maximum value reported for a magnetic conductor3,4. Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions5,6,7 is responsible for the observed –Tlog(T) behaviour, with T denoting the temperature, and the enhanced value of the transverse thermoelectric conductivity. The temperature dependence of the thermoelectric response in experiments and numerical calculations can be understood in terms of a quantum critical-scaling function predicted by the low-energy effective theory over more than a decade of temperatures. Moreover, the observation of an unsaturated positive longitudinal magnetoconductance, or chiral anomaly8,9,10, also provides evidence for the existence of Weyl fermions11,12 in Co2MnGa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure, theoretical band structure and Weyl points of Co2MnGa.
Fig. 2: Observation of the giant anomalous Nernst effect at room temperature in Co2MnGa.
Fig. 3: Giant anomalous Hall and transverse thermoelectric conductivities and the crossover between the regimes following and violating the Mott relation.
Fig. 4: Evidence for the Weyl metal state in the ferromagnetic Co2MnGa.


  1. 1.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Hasegawa, K. et al. Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films. Appl. Phys. Lett. 106, 252405 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  5. 5.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Nielsen, H. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Slachter, A., Bakker, F. L., Adam, J.-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).

    Article  Google Scholar 

  15. 15.

    Huang, S. Y., Wang, W. G., Lee, S. F., Kwo, J. & Chien, C. L. Intrinsic spin-dependent thermal transport. Phys. Rev. Lett. 107, 216604 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Lee, W.-L., Watauchi, S., Miller, V. L., Cava, R. J. & Ong, N. P. Anomalous Hall heat current and Nernst effect in the CuCr2Se4−xBrx ferromagnet. Phys. Rev. Lett. 93, 226601 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    ADS  Article  Google Scholar 

  21. 21.

    Pu, Y., Chiba, D., Matsukura, F., Ohno, H. & Shi, J. Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 101, 117208 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    Sakuraba, Y. et al. Anomalous Nernst effect in L10-FePt/MnGa thermopiles for new thermoelectric applications. Appl. Phys. Express 6, 033003 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Kuroda, K. et al. Evidence for magnetic magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Sharma, G., Goswami, P. & Tewari, S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys. Rev. B 93, 035116 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Chen, Y. J., Basiaga, D., O’Brien, J. R. & Heiman, D. Anomalous magnetic properties and Hall effect in ferromagnetic Co2MnAl epilayers. Appl. Phys. Lett. 84, 4301–4303 (2004).

    ADS  Article  Google Scholar 

  28. 28.

    Webster, P. Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Solids 32, 1221–1231 (1971).

    ADS  Article  Google Scholar 

  29. 29.

    Ludbrook, B. M., Ruck, B. J. & Granville, S. Perpendicular magnetic anisotropy in Co2MnGa and its anomalous Hall effect. Appl. Phys. Lett. 110, 062408 (2017).

    ADS  Article  Google Scholar 

Download references


This work was supported by CREST (JPMJCR15Q5) by Japan Science and Technology Agency, by Grants-in-Aid for Scientific Research (grant numbers 16H02209, 25707030), by Grants-in-Aid for Scientific Research on Innovative Areas “J-Physics” (grant numbers 15H05882 and 15H05883) and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (grant number R2604) from the Japanese Society for the Promotion of Science. P.G. was supported by JQI-NSF-PFC and LPS-MPO-CMTC (at the University of Maryland) and start-up funds from the Northwestern University. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics is appreciated.

Author information




S.N. conceived and planned the experimental project. A.N., R.S. and S.N. worked on the single-crystal growth and preparation of samples. A.S. and R.S. carried out the transport and low-temperature measurements and analysed the data. Y.M., T.K., M.S., N.T. and R.A. performed the first-principles calculations. P.G. formulated the quantum critical theory and scaling analysis of the experimental and numerical results. S.N. performed the scaling analysis. R.I. performed the chemical analyses. D.H. acquired the electron diffraction image. S.N., A.S. and P.G. wrote the paper with inputs from Y.M. and R.A. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Satoru Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures S1–S7, Supplementary Table S1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakai, A., Mizuta, Y.P., Nugroho, A.A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nature Phys 14, 1119–1124 (2018).

Download citation

Further reading