Complex magnetic order in nickelate slabs


Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades1,2,3,4,5,6. Here we introduce an elementary model system—NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix—and use polarized resonant X-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighbouring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: NdNiO3 slabs truncated along the [111] crystallographic direction.
Fig. 2: X-ray absorption and resonant magnetic X-ray scattering.
Fig. 3: Crossover from non-collinear (↑→↓←) to collinear (↑↑↓↓) spin structures by truncation along the [111] direction.
Fig. 4: DFT + U and low-energy spin model magnetic ground state of NdNiO3–NdGaO3 heterostructures as a function of truncation along the [111] direction.
Fig. 5: Energy dependence of magnetic scattering and tuning of magnetic moments by structural pinning.


  1. 1.

    Alonso, J. A. et al. Charge disproportionation in RNiO3 perovskites: Simultaneous metal–insulator and structural transition in YNiO3. Phys. Rev. Lett. 82, 3871–3874 (1999).

    ADS  Article  Google Scholar 

  2. 2.

    García-Muñoz, J. L., Rodrguez-Carvajal, J. & Lacorre, P. Sudden appearance of an unusual spin density wave at the metal–insulator transition in the perovskites RNiO3 (R = Pr, Nd). Europhys. Lett. 20, 241–247 (1992).

    ADS  Article  Google Scholar 

  3. 3.

    Munoz, A., Alonso, J., Martanez-Lope, M. & Fernandez-Daaz, M. On the magnetic structure of DyNiO3. J. Solid State Chem. 182, 1982–1989 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Scagnoli, V. et al. Role of magnetic and orbital ordering at the metal–insulator transition in NdNiO3. Phys. Rev. B 73, 100409 (2006).

    ADS  Article  Google Scholar 

  5. 5.

    Scagnoli, V. et al. Induced noncollinear magnetic order of Nd3+ in NdNiO3 observed by resonant soft X-ray diffraction. Phys. Rev. B 77, 115138 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Frano, A. et al. Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys. Rev. Lett. 111, 106804 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, 461–473 (2016).

    Article  Google Scholar 

  8. 8.

    Catalan, G. Progress in perovskite nickelate research. Phase Transitions 81, 729–749 (2008).

    Article  Google Scholar 

  9. 9.

    Johnston, S. et al. Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal–insulator transition. Phys. Rev. Lett. 112, 106404 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Lee, S., Chen, R. & Balents, L. Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106, 016405 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Park, H., Millis, A. J. & Marianetti, C. A. Site-selective Mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109, 156402 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Subedi, A., Peil, O. E. & Georges, A. Low-energy description of the metal–insulator transition in the rare-earth nickelates. Phys. Rev. B 91, 075128 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Guo, H. et al. Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nat. Commun. 9, 43 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Giovannetti, G. et al. Multiferroicity in rare-earth nickelates RNiO3. Phys. Rev. Lett. 103, 156401 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Hepting, M. et al. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys. Rev. Lett. 113, 227206 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Lu, Y. et al. Quantitative determination of bond order and lattice distortions in nickel oxide heterostructures by resonant X-ray scattering. Phys. Rev. B 93, 165121 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Gibert, M. et al. Exchange bias in LaNiO3–LaMnO3 superlattices. Nat. Mater. 11, 195–198 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Bluschke, M. et al. Transfer of magnetic order and anisotropy through epitaxial integration of 3d and 4f spin systems. Phys. Rev. Lett. 118, 207203 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Varignon, J. et al. Complete phase diagram of rare-earth nickelates from first-principles. npj Quant. Mater, 2, 21 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Hampel, A. & Ederer, C. Interplay between breathing mode distortion and magnetic order in rare-earth nickelates RNiO3 within DFT + U. Phys. Rev. B 96, 165130 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Green, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Staub, U. et al. Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett. 88, 126402 (2002).

    ADS  Article  Google Scholar 

  25. 25.

    García-Muñoz, J. L., Aranda, M. A. G., Alonso, J. A. & Martínez-Lope, M. J. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3. Phys. Rev. B 79, 134432 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Grisolia, M. N. et al. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfacess. Nat. Phys. 12, 484–492 (2016).

    Article  Google Scholar 

  27. 27.

    Catalano, S. et al. Tailoring the electronic transitions of NdNiO3 films through (111)pc oriented interfaces. APL Mater. 3, 062506 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Liao, Z. et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 15, 425–431 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Kim, J.-H. et al. Competing exchange interactions on the verge of a metal–insulator transition in the two-dimensional spiral magnet Sr3Fe2O7. Phys. Rev. Lett. 113, 147206 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    de Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960).

    ADS  Article  Google Scholar 

  31. 31.

    Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B 61, 11263–11266 (2000).

    ADS  Article  Google Scholar 

  32. 32.

    Wu, M. et al. Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys. Rev. B 88, 125124 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-Ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).

    ADS  Article  Google Scholar 

  34. 34.

    Haverkort, M. W., Hollmann, N., Krug, I. P. & Tanaka, A. Symmetry analysis of magneto-optical effects: The case of X-ray diffraction and X-ray absorption at the transition metal L2,3 edge. Phys. Rev. B 82, 094403 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Macke, S. ReMagX X-ray reflectivity tool. ReMagX (2016).

  36. 36.

    Chantler, C. Theoretical form factor, attenuation, and scattering tabulation for Z = 1−92 from E = 1−10 eV to E = 0.4−1.0 MeV. J. Phys. Chem. Ref. Data 24, 71 (1995).

    ADS  Article  Google Scholar 

  37. 37.

    Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Macke, S. et al. Dynamical effects in resonant X-ray diffraction. Phys. Rev. Lett. 117, 115501 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Bosman, M. et al. Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006).

    Article  Google Scholar 

  40. 40.

    Wang, Y. et al. Oxygen octahedra picker: A software tool to extract quantitative information from STEM images. Ultramicroscopy 168, 46–52 (2016).

    Article  Google Scholar 

  41. 41.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS  Article  Google Scholar 

  42. 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  43. 43.

    Seth, P. et al. Renormalization of effective interactions in a negative charge transfer insulator. Phys. Rev. B 96, 205139 (2017).

    ADS  Article  Google Scholar 

Download references


We thank G. Khaliullin, I. Elfimov, Y. Lu, C. Dietl, F. Wrobel, H.-U. Habermeier and P. Wochner for fruitful discussions. Financial support from the DFG under grant no. SFB/TRR80 G1 and from the European Union Seventh Framework Program [FP/2007–2013] under grant agreement no. 312483 (ESTEEM2) is acknowledged. Part of this work has been funded by the Max Planck-UBC Centre for Quantum Materials. Further, this work was supported by the Swiss National Science Foundation through Division II. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC grant agreement no. 319286 (Q-MAC). The Canadian Light Source (CLS) is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.

Author information




M.H., R.J.G. and E.B. conceived the project, performed the experiments, and analysed the data together with M.L.T., G.A.S. and B.K. Assistance in the experiments and contributions to the data analysis were made by M.B., S.M. and A.F. STEM investigations were performed by Y.E.S. under the supervision of Y.W. and P.A.v.A. The DFT + U calculations were carried out by Z.Z. and P.H. The RXS experiments were supported by R.S. and F.H. The PLD samples were grown by G.C. and G.L. The sputtered sample was grown and characterized by S.C. under the supervision of M.G. and J-M.T. M.H., B.K. and E.B. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to E. Benckiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 6–12, Supplementary Tables 1–4, Supplementary References 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hepting, M., Green, R.J., Zhong, Z. et al. Complex magnetic order in nickelate slabs. Nature Phys 14, 1097–1102 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing