Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biexcitonic optical Stark effects in monolayer molybdenum diselenide

Abstract

Floquet states, where a periodic optical field coherently drives electrons in solids1,2,3, can enable novel quantum states of matter4,5,6. A prominent approach to realize Floquet states is based on the optical Stark effect. Previous studies on the optical Stark effect often treated the excited state in solids as free quasi-particles3,7,8,9,10,11,12. However, exciton–exciton interactions can be sizeably enhanced in low-dimensional systems and may lead to light–matter interactions that are qualitatively different from those in the non-interacting picture. Here we use monolayer molybdenum diselenide (MoSe2) as a model system to demonstrate that the driving optical field can couple a hierarchy of excitonic states, and the many-body inter-valley biexciton state plays a dominant role in the optical Stark effect. Specifically, the exciton–biexciton coupling in monolayer MoSe2 breaks down the valley selection rules based on the non-interacting exciton picture. The photon-dressed excitonic states exhibit an energy redshift, splitting or blueshift as the driving photon frequency varies below the exciton transition. We determine a binding energy of 21 meV for the inter-valley biexciton and a transition dipole moment of 9.3 debye for the exciton–biexciton transition. Our study reveals the crucial role of many-body effects in coherent light–matter interaction in atomically thin two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams of optical transition in MoSe2.
Fig. 2: Valley-dependent optical Stark effects.
Fig. 3: Biexcitonic coherent optical Stark effects.
Fig. 4: Anomalous optical Stark shift in the Kʹ valley.

Similar content being viewed by others

References

  1. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965).

    Article  ADS  Google Scholar 

  2. Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article  ADS  Google Scholar 

  3. Galitskii, V. M., Goreslavskii, S. P. & Elesin, V. F. Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave. J. Exp. Theor. Phys. 30, 117–122 (1970).

    ADS  Google Scholar 

  4. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).

    Article  ADS  Google Scholar 

  5. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  6. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  7. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article  ADS  Google Scholar 

  8. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  ADS  Google Scholar 

  9. Von Lehmen, A., Chemla, D. S., Heritage, J. P. & Zucker, J. E. Optical Stark effect on excitons in GaAs quantum wells. Opt. Lett. 11, 609–611 (1986).

    Article  ADS  Google Scholar 

  10. Cohen-Tannoudji, C. & Reynaud, S. Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J. Phys. B 10, 345–363 (1977).

    Article  ADS  Google Scholar 

  11. De Giovannini, U., Hübener, H. & Rubio, A. Monitoring electron–photon dressing in WSe2. Nano Lett. 16, 7993–7998 (2016).

    Article  ADS  Google Scholar 

  12. Sie, E. J. et al. Large, valley-exclusive Bloch–Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017).

    Article  ADS  Google Scholar 

  13. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887–891 (2012).

    Article  Google Scholar 

  14. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  15. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  16. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  17. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  ADS  Google Scholar 

  18. Zhang, D. K., Kidd, D. W. & Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 15, 7002–7005 (2015).

    Article  ADS  Google Scholar 

  19. Kylänpää, I. & Komsa, H.-P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 92, 205418 (2015).

    Article  ADS  Google Scholar 

  20. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  21. Chernikov, A. et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 115, 126802 (2015).

    Article  ADS  Google Scholar 

  22. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    Article  Google Scholar 

  23. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  24. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  25. Claassen, M., Jia, C., Moritz, B. & Devereaux, T. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).

    Article  ADS  Google Scholar 

  26. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  ADS  Google Scholar 

  27. You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    Article  Google Scholar 

  28. Hao, K. et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 8, 15552 (2017).

    Article  ADS  Google Scholar 

  29. Sie, E. J., Lui, C. H., Lee, Y.-H., Kong, J. & Gedik, N. Observation of intervalley biexcitonic optical Stark effect in monolayer WS2. Nano Lett. 16, 7421–7426 (2016).

    Article  ADS  Google Scholar 

  30. Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2017).

    Article  Google Scholar 

  31. Jin, C. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 (Van der Waals Heterostructures program KCWF16). Preparation of the hBN-encapsulated monolayer MoSe2 is supported by the National Science Foundation EFRI programme (EFMA-1542741). Growth of hBN crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI grant numbers JP15K21722 and JP25106006. S.T. acknowledges the support from NSF DMR 1552220 NSF CAREER award.

Author information

Authors and Affiliations

Authors

Contributions

C.-K.Y. and F.W. conceived the research. C.-K.Y. carried out optical measurements, assisted by J.H. and C.-S.Y. C.-K.Y., F.W. and J.H. analysed the data and performed theoretical analysis. J.H. fabricated the devices, assisted by A.W., C.-K.L. and S.Z. Y.S, H.C. and S.T. synthesized MoSe2 crystals. K.W. and T.T. synthesized hBN crystals. C.-K.Y. and F.W. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Chaw-Keong Yong or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures S1–S4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, CK., Horng, J., Shen, Y. et al. Biexcitonic optical Stark effects in monolayer molybdenum diselenide. Nature Phys 14, 1092–1096 (2018). https://doi.org/10.1038/s41567-018-0216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0216-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing