Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological spin excitations in a three-dimensional antiferromagnet


Band topology, namely the global wavefunction structure that gives rise to the properties observed in the bulk and on the surface of crystalline materials, is currently a topic under intense investigation for both fundamental interest and its technological potential1,2,3,4. While topological band crossing in three dimensions was first studied for electrons in semimetals4,5,6,7,8,9,10, the underlying physical idea is not restricted to fermions11,12,13,14,15 and similar band structures of electromagnetic waves have been observed in artificial structures16. Fundamental bosonic excitations in real crystals, however, have not been observed to exhibit any counterparts. Here we use inelastic neutron scattering to reveal the presence of topological spin excitations (magnons) in a three-dimensional antiferromagnet, Cu3TeO6, which features a unique lattice of magnetic spin-1/2 Cu2+ ions17. Further to previous works on this system17,18, we find that the Cu2+ spins interact over a variety of distances, with the ninth-nearest-neighbour interaction being particularly strong. While the presence of topological magnon band crossing is independent of model details15, the far-reaching interactions suppress quantum fluctuations and make the magnon signals sharp and intense. Using accurate measurement and calculation, we visualize two magnon bands that cross at Dirac points protected by (approximate) U(1) spin-rotation symmetry. As a limiting case of topological nodal lines with Z2-monopole charges15,19, these Dirac points are new to the family of experimentally confirmed topological band structures. Our results render magnon systems a fertile ground for exploring novel band topology with neutron scattering, along with distinct observables in other related experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Primary magnetic interactions in Cu3TeO6.
Fig. 2: Basic properties of spin excitations.
Fig. 3: Comparison between INS and LSWT-calculated magnon spectra.
Fig. 4: Evidence for Dirac-point-like magnon band crossing.


  1. 1.

    Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  11. 11.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Stenull, O., Kane, C. L. & Lubensky, T. C. Topological phonons and Weyl lines in three dimensions. Phys. Rev. Lett. 117, 068001 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Li, F. Y. et al. Weyl magnons in breathing pyrochlore antiferromagnets. Nat. Commun. 7, 12691 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Mook, A., Henk, J. & Mertig, I. Tunable magnon Weyl points in ferromagnetic pyrochlores. Phys. Rev. Lett. 117, 157204 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Li, K., Li, C., Hu, J., Li, Y. & Fang, C. Dirac and nodal line magnons in three-dimensional antiferromagnets. Phys. Rev. Lett. 119, 247202 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Herak, M. et al. Novel spin lattice in Cu3TeO6: an antiferromagnetic order and domain dynamics. J. Phys. Condens. Matter 17, 7667–7679 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    Månsson, M. et al. Magnetic order and transitions in the spin-web compound Cu3TeO6. Phys. Procedia 30, 142–145 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Fang, C., Chen, Y., Kee, H. Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201(R) (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Preprint at (2017).

  21. 21.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  Article  Google Scholar 

  22. 22.

    Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. Phys. Rev. Lett. 117, 096404 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Zhitomirsky, M. E. & Chernyshev, A. L. Colloquium: Spontaneous magnon decays. Rev. Mod. Phys. 85, 219–243 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005).

    ADS  Article  Google Scholar 

  26. 26.

    Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-T c superconductor-parent antiferromagnet La2CuO4. Phys. Rev. Lett. 105, 247001 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Dalla Piazza, B. et al. Fractional excitations in the square lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015).

    Article  Google Scholar 

  28. 28.

    Whangbo, M. H., Koo, H. J. & Dai, D. Spin exchange interactions and magnetic structures of extended magnetic solids with localized spins: theoretical descriptions on formal, quantitative and qualitative levels. J. Solid State Chem. 176, 417–481 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Po, H. C., Vishwanath, A. & Watanabe, H. Complete theory of symmetry-based indicators of band topology. Nat. Commun. 8, 50 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Bao, S. et al. Observation of Dirac magnons in a three-dimensional antiferromagnet Cu3TeO6. Preprint at (2017).

  32. 32.

    He, Z. & Itoh, M. Magnetic behaviors of Cu3TeO6 with multiple spin lattices. J. Mag. Mag. Mater. 354, 146–150 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Kajimoto, R. et al. The Fermi chopper spectrometer 4SEASONS at J-PARC. J. Phys. Soc. Jpn 80, SB025 (2011).

    Article  Google Scholar 

  34. 34.

    Nakamura, M. et al. First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn 78, 093002 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software “Utsusemi” for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn 82, SA031 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Ewings, R. et al. HORACE: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. Nucl. Instrum. Meth. A 834, 132–142 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Xu, G., Xu, Z. & Tranquada, J. M. Absolute cross-section normalization of magnetic neutron scattering data. Rev. Sci. Instrum. 84, 083906 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Shirane, G., Shapiro, S. M. & Tranquada, J. M. Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge Univ. Press, Cambridge, 2002).

  39. 39.

    Choi, K. Y., Lemmens, P., Choi, E. S. & Berger, H. Lattice anomalies and magnetic excitations of the spin web compound Cu3TeO6. J. Phys. Condens. Matter 20, 505214 (2008).

    Article  Google Scholar 

  40. 40.

    Herak, M. Cubic magnetic anisotropy of the antiferromagnetically ordered Cu3TeO6. Solid State Commun. 151, 1588–1592 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Lorenzana, J., Seibold, G. & Coldea, R. Sum rules and missing spectral weight in magnetic neutron scattering in the cuprates. Phys. Rev. B 72, 224511 (2005).

    ADS  Article  Google Scholar 

  42. 42.

    Wang, M. et al. Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2. Nat. Commun. 2, 580 (2011).

    Article  Google Scholar 

  43. 43.

    Sandvik, A. W. Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model. Phys. Rev. B 56, 11678–11690 (1997).

    ADS  Article  Google Scholar 

  44. 44.

    Schmidt, R., Schulenburg, J., Richter, J. & Betts, D. D. Spin-1/2 J 1J 2 model on the body-centered cubic lattice. Phys. Rev. B 66, 224406 (2002).

    ADS  Article  Google Scholar 

Download references


We wish to thank F. Wang, G. Chen, O. Janson, X. Zhang, E. Motoyama and L. Fu for discussions and comments. The INS experiments were performed at the MLF, J-PARC, Japan, under a user programme (proposal nos 2016B0116 and 2017I0001). Work at the Institute of Physics, Chinese Academy of Sciences is supported by the Ministry of Science and Technology of China (grant no. 2016YFA0302400) and the National Natural Science Foundation of China (grant no. 11674370). Work at Peking University is supported by the National Natural Science Foundation of China (grant no. 11522429) and the Ministry of Science and Technology of China (grant nos 2018YFA0305602 and 2015CB921302).

Author information




Y.L. conceived the research. L.W., C.L., C.F. and Y.L. designed the experiment. W.Y., C.L., L.W. and Y.D. prepared the sample. W.Y., C.L., S.X., K.I., K.K. and Y.L. performed the INS experiments. W.Y. and Y.L. analysed the experimental data. C.L., K.L. and C.F. performed the theoretical analyses. W.Y., C.L., L.W., C.F. and Y.L. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Chen Fang or Yuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

11 Figures, 1 Table, 4 References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Li, C., Wang, L. et al. Topological spin excitations in a three-dimensional antiferromagnet. Nature Phys 14, 1011–1015 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing