Abstract
High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to quantum communication, which are mostly based on the entanglement between qubits—two-dimensional quantum systems. One of the central challenges in the pursuit of high-dimensional alternatives is ascertaining the presence of high-dimensional entanglement within a given high-dimensional quantum state. In particular, it would be desirable to carry out such entanglement certification without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental set-up, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements
Nature Communications Open Access 27 July 2022
-
Towards higher-dimensional structured light
Light: Science & Applications Open Access 05 July 2022
-
Scalable estimation of pure multi-qubit states
npj Quantum Information Open Access 13 May 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).
Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002).
Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell's theorem. Phys. Rev. Lett. 68, 557–559 (1992).
Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).
Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).
Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).
Barrett, J., Kent, A. & Pironio, S. Maximally nonlocal and monogamous quantum correlations. Phys. Rev. Lett. 97, 170409 (2006).
Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G. & Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
Eltschka, C. & Siewert, J. Quantifying entanglement resources. J. Phys. A 47, 424005 (2014).
Huber, M. & Pawlowski, M. Weak randomness in device independent quantum key distribution and the advantage of using high dimensional entanglement. Phys. Rev. A 88, 032309 (2013).
Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015).
Gutiérrez-Esparza, A. J. et al. Detection of nonlocal superpositions. Phys. Rev. A 90, 032328 (2014).
Krenn, M., Malik, M., Erhard, M. & Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Phil. Trans. R. Soc. A 375, 20150442 (2017).
Vaziri, A., Weihs, G. & Zeilinger, A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89, 240401 (2002).
Kulkarni, G., Sahu, R., Magana-Loaiza, O. S., Boyd, R. W. & Jha, A. K. Single-shot measurement of the orbital-angular-momentum spectrum of light. Nat. Commun. 8, 1054 (2017).
de Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Creating high dimensional time-bin entanglement using mode-locked lasers. Quant. Inf. Comp. 2, 425–433 (2002).
Thew, R. T., Acín, A., Zbinden, H. & Gisin, N. Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004).
Martin, A. et al. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110501 (2017).
Jha, A. K., Malik, M. & Boyd, R. W. Exploring energy–time entanglement using geometric phase. Phys. Rev. Lett. 101, 180405 (2008).
Steinlechner, F. et al. Distribution of high-dimensional entanglement via an intra-city freespace link. Nat. Commun. 8, 15971 (2017).
Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).
Anderson, B. E., Sosa-Martinez, H., Riofrío, C. A., Deutsch, I. H. & Jessen, P. S. Accurate and robust unitary transformations of a high-dimensional quantum system. Phys. Rev. Lett. 114, 240401 (2015).
Kumar, K. S., Vepsäläinen, A., Danilin, S. & Paraoanu, G. S. Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016).
Bertlmann, R. A. & Krammer, P. Bloch vectors for qudits. J. Phys. A 41, 235303 (2008).
Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).
Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental GHZ entanglement beyond qubits. Preprint at http://arxiv.org/abs/1708.03881 (2017).
Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Bennett, C. H., Di Vincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824 (1996).
Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).
Erker, P., Krenn, M. & Huber, M. Quantifying high dimensional entanglement with two mutually unbiased bases. Quantum 1, 22 (2017).
Piani, M. & Mora, C. Class of PPT bound entangled states associated to almost any set of pure entangled states. Phys. Rev. A. 75, 012305 (2007).
Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).
Arrizón, V., Ruiz, U., Carrada, R. & González, L. A. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A. 24, 3500–3507 (2007).
Wootters, W. K. & Fields, B. D. Optimal state determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989).
Coladangelo, A., Goh, K. T. & Scarani, V. All pure bipartite entangled states can be self-tested. Nat. Commun. 8, 15485 (2017).
Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).
Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).
Brougham, T. & Barnett, S. M. Mutually unbiased measurements for high-dimensional time-bin-based photonic states. Europhys. Lett. 104, 30003 (2013).
Mower, J. et al. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A. 87, 062322 (2013).
Spengler, C., Huber, M., Brierley, S., Adaktylos, T. & Hiesmayr, B. C. Entanglement detection via mutually unbiased bases. Phys. Rev. A. 86, 022311 (2012).
Giovannini, D. et al. Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110, 143601 (2013).
Tasca, D. S. et al. Testing for entanglement with periodic coarse graining. Phys. Rev. A. 97, 042312 (2018).
Paul, E. C., Tasca, D. S., Rudnicki, L. & Walborn, S. P. Detecting entanglement of continuous variables with three mutually unbiased bases. Phys. Rev. A. 94, 012303 (2016).
Tasca, D. S., Sánchez, P., Walborn, S. P. & Rudnicki, L. Mutual unbiasedness in coarse-grained continuous variables. Phys. Rev. Lett. 120, 040403 (2018).
Schneeloch, J. & Howland, G. A. Quantifying high-dimensional entanglement with Einstein–Podolsky–Rosen correlations. Phys. Rev. A. 97, 042338 (2018).
Sauerwein, D., Macchiavello, C., Maccone, L. & Kraus, B. Multipartite correlations in mutually unbiased bases. Phys. Rev. A. 95, 042315 (2017).
Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).
Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090405 (2016).
Acknowledgements
We thank A. Zeilinger for many fruitful discussions and guidance regarding the experimental set-up. We acknowledge funding from the Austrian Science Fund (FWF) through the START project Y879-N27 and the joint Czech-Austrian project MultiQUEST (I 3053-N27 and GF17-33780L). J.B. and M.H. acknowledge support from the ESQ Discovery Grant of the Austrian Academy of Sciences (ÖAW) project OESQ0002X2. P.E. acknowledges funding by the European Commission (STREP RAQUEL) and the Swiss National Science Foundation (SNF). M.M. acknowledges support from the QuantERA ERA-NET Co-fund (FWF project I3553-N36).
Author information
Authors and Affiliations
Contributions
M.M. and M.H. conceived and designed the experiments. J.B., N.H. and M.M. performed the experiments. J.B., N.H., M.P., N.F., M.M. and M.H. analysed the data. J.B., C.K., M.P., P.E., N.F., M.M. and M.H. developed theoretical methods. J.B., N.H., C.K., M.P., N.F., M.M. and M.H. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–10, Supplementary Figures 1–7, Supplementary Table 1, Supplementary References 1–21
Rights and permissions
About this article
Cite this article
Bavaresco, J., Herrera Valencia, N., Klöckl, C. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nature Phys 14, 1032–1037 (2018). https://doi.org/10.1038/s41567-018-0203-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0203-z
This article is cited by
-
High-dimensional quantum information processing on programmable integrated photonic chips
Science China Information Sciences (2023)
-
Quantifying unknown entanglement by neural networks
Quantum Information Processing (2023)
-
Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements
Nature Communications (2022)
-
Towards higher-dimensional structured light
Light: Science & Applications (2022)
-
Scalable estimation of pure multi-qubit states
npj Quantum Information (2022)