When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions of a wave’s free propagation is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave’s intensity can be achieved by adding a continuous gain–loss distribution to the disorder. Here we propose a practical discretized version of this abstract concept and implement it in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain–loss additions can turn localized systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments, not only in sound engineering, but also in other related fields such as in non-Hermitian photonics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Tourin, A., Fink, M. & Derode, A. Multiple scattering of sound. Waves Random Media 10, R31–R60 (2000).

  2. 2.

    Akkermans, É. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, Cambridge, 2007).

  3. 3.

    Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  4. 4.

    Mudry, K. M., Plonsey, R. & Bronzino, J. D. Biomedical Imaging (CRC Press, Boca Raton, FL, 2003).

  5. 5.

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling Electromagnetic Fields. Science 312, 1780–1782 (2006).

  6. 6.

    Iniewski, K. Wireless Technologies: Circuits, Systems, and Devices (CRC Press, Boca Raton, FL, 2007).

  7. 7.

    Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl Acad. Sci. USA 106, 20658–20663 (2009).

  8. 8.

    Tyson, R. Principles of Adaptive Optics (CRC Press, Boca Raton, FL, 2010).

  9. 9.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

  10. 10.

    Rotter, S. & Gigan, S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

  11. 11.

    Leseur, O., Pierrat, R. & Carminati, R. High-density hyperuniform materials can be transparent. Optica 3, 763–767 (2016).

  12. 12.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

  13. 13.

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

  14. 14.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

  15. 15.

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

  16. 16.

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

  17. 17.

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

  18. 18.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

  19. 19.

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

  20. 20.

    Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

  21. 21.

    Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity–time symmetry. Nat. Commun. 6, 5905 (2015).

  22. 22.

    Shi, C. et al. Accessing the exceptional points of parity–time symmetric acoustics. Nat. Commun. 7, 11110 (2016).

  23. 23.

    Aurégan, Y. & Pagneux, V. PT-symmetric scattering in flow-duct acoustics. Phys. Rev. Lett. 118, 174301 (2017).

  24. 24.

    Konotop, V. V. & Zezyulin, D. A. Families of stationary modes in complex potentials. Opt. Lett. 39, 5535–5538 (2014).

  25. 25.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

  26. 26.

    Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

  27. 27.

    Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

  28. 28.

    Makris, K. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Constant intensity waves and their modulation instabilities in non-Hermitian potentials. Nat. Commun. 6, 7257 (2015).

  29. 29.

    Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017).

  30. 30.

    Fleury, R. & Alù, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

  31. 31.

    Pozar D. M. in Microwave Engineering 206–210 (Wiley, New York, NY, 2011).

  32. 32.

    Rivet, E., Karkar, S. & Lissek, H. Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control. IEEE Trans. Control Syst. Technol. 25, 63–72 (2017).

  33. 33.

    Prandoni P. & Vetterli M. in Signal Processing for Communications 348–349 (Collection le savoir Suisse, Lausanne, 2008).

  34. 34.

    Lissek, H., Boulandet, R. & Fleury, R. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption. J. Acoust. Soc. Am. 129, 2968–2978 (2011).

Download references


The authors would like to thank M. Paolone and the Distributed Electrical Systems Laboratory at Ecole Polytechnique Fédérale de Lausanne (EPFL) for lending us the National Instrument CompactRIO-9068 platform for the experiment.

Author information


  1. Signal Processing Laboratory 2, EPFL, Lausanne, Switzerland

    • Etienne Rivet
    •  & Hervé Lissek
  2. Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria

    • Andre Brandstötter
    •  & Stefan Rotter
  3. Department of Physics, University of Crete, Heraklion, Greece

    • Konstantinos G. Makris
  4. Laboratory of Wave Engineering, EPFL, Lausanne, Switzerland

    • Romain Fleury


  1. Search for Etienne Rivet in:

  2. Search for Andre Brandstötter in:

  3. Search for Konstantinos G. Makris in:

  4. Search for Hervé Lissek in:

  5. Search for Stefan Rotter in:

  6. Search for Romain Fleury in:


A.B., K.G.M. and S.R. developed the concept and theory of continuous constant amplitude waves. E.R. and R.F. developed the discrete theory of constant-amplitude waves and performed the numerical simulations. E.R. formulated the acoustic impedance control theory, developed the control technology used in the experiment, and performed the experiment. H.L. supervised the experimental work. S.R. and R.F. initiated and supervised the project. All authors discussed the results and contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Romain Fleury.

Supplementary information

  1. Supplementary material

    Supplementary figures 1 and 2

About this article

Publication history