Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong coupling between photons of two light fields mediated by one atom

Abstract

All-optical sensing of the number of photons in one light field with another light field is a longstanding goal with intriguing prospects for various quantum applications1. A suitable system must be capable of strongly coupling individual photons of the two fields2. Here we report on the realization of such a system for two fields at wavelengths 780 nm and 795 nm. These fields drive two modes of an optical cavity, each strongly coupled to separate transitions of a single rubidium atom. An additional control laser addresses the atom and induces a tunable coupling between the modes, resulting in a doubly nonlinear energy-level structure of the photon–photon–atom system3,4,5,6. We observe strong correlations between the light fields, with photons either mutually blocking each other or transiting the system conjunctly, and demonstrate all-optical switching at the single-photon level as a first application. In this new setting of strongly coupled light fields, nondestructive counting of photons with photons7 and heralded n-photon sources8 might be within reach.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Strong coupling of light fields.
Fig. 2: Spectra of the individual probe and signal systems.
Fig. 3: Mutual photon blockade.
Fig. 4: Conjunct photon transit.
Fig. 5: Single-photon switch.

References

  1. Kok, P. & Lovett, B. W. Introduction to Optical Quantum Processing (Cambridge Univ. Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  2. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics - photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article  ADS  Google Scholar 

  3. Werner, M. J. & Imamoglu, A. Photon–photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A 61, 011801(R) (1999).

    Article  ADS  Google Scholar 

  4. Rebić, S., Parkins, A. S. & Tan, S. M. Polariton analysis of a four-level atom strongly coupled to a cavity mode. Phys. Rev. A 65, 043806 (2002).

    Article  ADS  Google Scholar 

  5. Bermel, P., Rodriguez, A., Johnson, S. G., Joannopoulos, J. D. & Soljačić, M. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006).

    Article  ADS  Google Scholar 

  6. Le Kien, F. & Rauschenbeutel, A. Nanofiber-based all-optical switches. Phys. Rev. A 93, 013849 (2016).

    Article  ADS  Google Scholar 

  7. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

    Article  ADS  Google Scholar 

  8. Muñoz, C. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).

    Article  ADS  Google Scholar 

  9. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

    Article  Google Scholar 

  10. Tey, M. K. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nat. Phys. 4, 924–927 (2008).

    Article  Google Scholar 

  11. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    Article  ADS  Google Scholar 

  12. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2008).

    Article  ADS  Google Scholar 

  13. Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nat. Phys. 4, 382–385 (2008).

    Article  Google Scholar 

  14. Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    Article  ADS  Google Scholar 

  15. Hamsen, C., Tolazzi, K. N., Wilk, T. & Rempe, G. Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 118, 133604 (2017).

    Article  ADS  Google Scholar 

  16. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  17. Albert, M., Dantan, A. & Drewsen, M. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photon. 5, 633–636 (2011).

    Article  ADS  Google Scholar 

  18. Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    Article  ADS  Google Scholar 

  19. Beck, K. M. et al. Cross modulation of two laser beams at the individual-photon level. Phys. Rev. Lett. 113, 113603 (2014).

    Article  ADS  Google Scholar 

  20. Yan, M., Rickey, E. G. & Zhu, Y. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 64, 041801 (2001).

    Article  ADS  Google Scholar 

  21. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  22. Feizpour, A. et al. Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015).

    Article  Google Scholar 

  23. Tavis, M. & Cummings, F. W. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    Article  ADS  Google Scholar 

  24. Tiarks, D., Schmidt, S., Rempe, G. & Dürr, S. Optical phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016).

    Article  ADS  Google Scholar 

  25. Busche, H. et al. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nat. Phys. 13, 655–658 (2017).

    Article  Google Scholar 

  26. Thompson, J. D. et al. Symmetry-protected collisions between strongly interacting photons. Nature 542, 206–209 (2017).

    Article  ADS  Google Scholar 

  27. Hamsen, C. Interacting Photons in a Strongly Coupled Atom-Cavity System. Dissertation, Technical University of Munich (2017).

  28. Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).

    Article  ADS  Google Scholar 

  29. Souza, J. A., Figueroa, E., Chibani, H., Villas-Boas, C. J. & Rempe, G. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013).

    Article  ADS  Google Scholar 

  30. Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletić, V. Vacuum-induced transparency. Science 333, 1266–1269 (2016).

    Article  ADS  Google Scholar 

  31. Hamsen, C., Tolazzi, K. N., Wilk, T. & Rempe, G. Quantum simulation framework for N-type cavity quantum electrodynamics. Zenodo https://doi.org/10.5281/zenodo.1240771 (2018).

  32. Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    Article  ADS  Google Scholar 

  33. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  Google Scholar 

  34. Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    Article  ADS  Google Scholar 

  35. Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Appl. Phys. B 122, 46 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Paulisch and A. González-Tudela for discussions on the theoretical framework, P. Altin and H. Chibani for support and discussions at an early stage of the experiment, and G. Li and B. Wang for discussions on the manuscript and results. We acknowledge support from the Deutsche Forschungsgemeinschaft via the excellence cluster Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experiment, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Tatjana Wilk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Text, Supplementary Figs. 1–9, References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamsen, C., Tolazzi, K.N., Wilk, T. et al. Strong coupling between photons of two light fields mediated by one atom. Nature Phys 14, 885–889 (2018). https://doi.org/10.1038/s41567-018-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0181-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing