Observation of Feshbach resonances between alkali and closed-shell atoms


Magnetic Feshbach resonances allow control of the interactions between ultracold atoms1. They are an invaluable tool in studies of few-body and many-body physics2,3, and can be used to convert pairs of atoms into molecules4,5 by ramping an applied magnetic field across a resonance. Molecules formed from pairs of alkali atoms have been transferred to low-lying states, producing dipolar quantum gases6. There is great interest in making molecules formed from an alkali atom and a closed-shell atom such as ground-state Sr or Yb. Such molecules have both a strong electric dipole and an electron spin; they will open up new possibilities for designing quantum many-body systems7,8, and for tests of fundamental symmetries9. The crucial first step is to observe Feshbach resonances in the corresponding atomic mixtures. Very narrow resonances have been predicted theoretically10,11,12, but until now have eluded observation. Here we present the observation of magnetic Feshbach resonances of this type, for an alkali atom, Rb, interacting with ground-state Sr.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Detection of Rb–Sr Feshbach resonances by field-dependent loss of Rb.
Fig. 2: Origin of the 87Rb–87Sr Feshbach resonances.
Fig. 3: Origin of the 87Rb–87Sr Feshbach resonance.


  1. 1.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    Greene, C. H., Giannakeas, P. & Pérez-Ríos, J. Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Hutson, J. M. & Soldán, P. Molecule formation in ultracold atomic gases. Int. Rev. Phys. Chem. 25, 497–526 (2006).

    Article  Google Scholar 

  5. 5.

    Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    Article  Google Scholar 

  7. 7.

    Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice–spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article  Google Scholar 

  8. 8.

    Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  Google Scholar 

  9. 9.

    Meyer, E. R. & Bohn, J. L. Electron electric-dipole-moment searches based on alkali-metal- or alkaline-earth-metal-bearing molecules. Phys. Rev. A 80, 042508 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Żuchowski, P. S., Aldegunde, J. & Hutson, J. M. Ultracold RbSr molecules can be formed by magnetoassociation. Phys. Rev. Lett. 105, 153201 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Brue, D. A. & Hutson, J. M. Magnetically tunable Feshbach resonances in ultracold Li–Yb mixtures. Phys. Rev. Lett. 108, 043201 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Brue, D. A. & Hutson, J. M. Prospects of forming ultracold molecules in 2Σ states by magnetoassociation of alkali-metal atoms with Yb. Phys. Rev. A 87, 052709 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    ADS  Article  Google Scholar 

  15. 15.

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).

    Article  Google Scholar 

  17. 17.

    Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Hara, H., Takasu, Y., Yamaoka, Y., Doyle, J. M. & Takahashi, Y. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 106, 205304 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Hansen, A. H. et al. Quantum degenerate mixture of ytterbium and lithium atoms. Phys. Rev. A 84, 011606(R) (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Borkowski, M. et al. Scattering lengths in isotopologues of the RbYb system. Phys. Rev. A 88, 052708 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Vaidya, V. D., Tiamsuphat, J., Rolston, S. L. & Porto, J. V. Degenerate Bose–Fermi mixtures of rubidium and ytterbium. Phys. Rev. A 92, 043604 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Guttridge, A. et al. Interspecies thermalization in an ultracold mixture of Cs and Yb in an optical trap. Phys. Rev. A 96, 012704 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Aldegunde, J. & Hutson, J. M. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms. Phys. Rev. A 97, 042505 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Żuchowski, P. S., Guérout, R. & Dulieu, O. Ground- and excited-state properties of the polar and paramagnetic RbSr molecule: A comparative study. Phys. Rev. A 90, 012507 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Pasquiou, B. et al. Quantum degenerate mixtures of strontium and rubidium atoms. Phys. Rev. A 88, 023601 (2013).

    ADS  Article  Google Scholar 

Download references


This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) (Grant agreement No. 615117 QuantStro). B.P. thanks the NWO for funding through Veni grant No. 680-47-438. P.S.\(\dot{{\rm{Z}}}\). thanks the National Science Center for support from grant 2017/25/B/ST4/01486. J.M.H. thanks the UK Engineering and Physical Sciences Research Council for support under Grant No. EP/P01058X/1.

Author information




V.B., A.C. and L.R. performed the experiments. B.P. and F.S. supervised the experimental work. P.S.\(\dot{{\rm{Z}}}\). and J.M.H. contributed theoretical analysis. All authors were involved in analysis and discussions of the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Florian Schreck.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbé, V., Ciamei, A., Pasquiou, B. et al. Observation of Feshbach resonances between alkali and closed-shell atoms. Nature Phys 14, 881–884 (2018). https://doi.org/10.1038/s41567-018-0169-x

Download citation

Further reading