A null test of general relativity based on a long-term comparison of atomic transition frequencies

Abstract

The local position invariance principle of general relativity stipulates that non-gravitational experiments should give outcomes that are independent of the position and orientation of the reference frames in which they have been performed. Here, we study the change in the rates of clocks on Earth with the spatial change of the solar potential, constraining the variation of a non-gravitational interaction—the hyperfine splitting in hydrogen and caesium atoms—to β = (2.2 ± 2.5) × 10−7, a factor of two improvement over previous estimates. Our result is based on the comparison between the long-term fractional frequency variation of four hydrogen masers that are part of an ensemble of clocks comprising the National Institute of Standards and Technology, Boulder, and the fractional frequencies of primary frequency standards operated by leading metrology laboratories in the United States, France, Germany, Italy and the United Kingdom over a period of more than 14 years. Using our results together with the previous best estimates of β, we impose strict limits on the variation of fundamental constants, resulting in a test of general relativity with an unprecedented level of precision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Position of Earth and Jupiter on modified Julian day (MJD) 56263 (2 December 2012).
Fig. 2: Frequency shifts of H and Cs for maser S3 for MJD 51508 (11 November 1999) to MJD 56959 (29 October 2014).
Fig. 3: Addressing the drift in the H maser with fitting functions.

References

  1. 1.

    Einstein, A. The Collected Papers of Albert Einstein, Volume 6: The Berlin Years: Writings, 1914–1917 (Princeton Univ. Press, Princeton, NJ, 1996).

  2. 2.

    DeMille, D., Doyle, J. M. & Sushkov, A. O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990–994 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ 9, 3 (2014).

    ADS  Article  MATH  Google Scholar 

  4. 4.

    Dicke, R. H. Experimental Relativity: Lectures delivered at Les Houches, 1963; Relativity, Groups and Topolo gy (eds DeWitt, C. and DeWitt, B.) (Gordon & Breach, New York, NY, 1964).

  5. 5.

    Sullivan, D. B. Time and frequency measurement at NIST: the first 100 years. In Proc. 2001 IEEE International Frequency Control Symposium, Cat. No. 01CH37218, 4–17 (IEEE, Piscataway, NJ, 2001).

  6. 6.

    Ashby, N. et al. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers. Phys. Rev. Lett. 98, 070802 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Levi, F. et al. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia 51, 270–284 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Jefferts, S. R. et al. Accuracy evaluation of NIST-F1. Metrologia 39, 321–336 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    Weyers, S., Hubner, U., Schroder, R., Tamm, C. & Bauch, A. Uncertainty evaluation of the atomic caesium fountain CSF1 of the PTB. Metrologia 38, 343–352 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    Gerginov, V. et al. Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia 47, 65–79 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Szymaniec, K. et al. NPL Cs fountain frequency standards and the quest for the ultimate accuracy. J. Phys. Conf. Ser. 723, 012003 (2016).

    Article  Google Scholar 

  12. 12.

    Guéna, J. et al. Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 391–410 (2012).

    Article  Google Scholar 

  13. 13.

    Reports of Evaluation of Primary Frequency Standards (BIPM, accessed 14 March 2017); http://www.bipm.org/en/bipm-services/timescales/time-ftp/data.html

  14. 14.

    Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S. & Kuchynka, P. The Planetary and Lunar Ephemerides DE430 and DE431 InterPlanetary Network Progress Report 42–196 (IPN, 2014).

  15. 15.

    Guéna, J. et al. Improved tests of local position invariance using Rb87 and Cs133 fountains. Phys. Rev. Lett. 109, 080801 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Peil, S., Crane, S., Hanssen, J. L., Swanson, T. B. & Ekstrom, C. R. Tests of local position invariance using continuously running atomic clocks. Phys. Rev. A 87, 010102(R) (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Uzan, J. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Fischer, M. et al. New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 92, 230802 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    Flambaum, V. V. & Tedesco, A. F. Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments. Phys. Rev. C 73, 055501 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    Dinh, T. H., Dunning, A., Dzuba, V. A. & Flambaum, V. V. Sensitivity of hyperfine structure to nuclear radius and quark mass variation. Phys. Rev. A 79, 054102 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Dzuba, V. A. & Flambaum, V. V. Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year. Phys. Rev. D 95, 015019 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Godun, R. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Huntemann, N. et al. Improved limit on a temporal variation of m p/m e from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Nicholson, T. L. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    Article  Google Scholar 

  27. 27.

    Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photon. 11, 48–52 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Tobar, M. E. et al. Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers. Phys. Rev. D 87, 122004 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Parker, T. E., Jefferts, S. R., Heavner, T. P. & Donley, E. A. Operation of the NIST-F1 caesium fountain primary frequency standard with a maser ensemble, including the impact of frequency transfer noise. Metrologia 42, 423–430 (2005).

    ADS  Article  Google Scholar 

  30. 30.

    Panfilo, G. & Parker, T. E. A theoretical and experimental analysis of frequency transfer uncertainty, including frequency transfer into TAI. Metrologia 47, 552–560 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Turneaure, J. P., Will, C. M., Farrell, B. F., Mattison, E. M. & Vessot, R. F. C. Test of the principle of equivalence by a null gravitational red-shift experiment. Phys. Rev. D 27, 1705–1714 (1983).

    ADS  Article  Google Scholar 

  32. 32.

    Godone, A., Novero, C. & Tavella, P. Null gravitational redshift experiment with nonidentical atomic clocks. Phys. Rev. D 51, 319–323 (1995).

    ADS  Article  Google Scholar 

  33. 33.

    Heß, M. P. et al. The ACES mission: system development and test status. Acta Astronaut. 69, 929–938 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Altschul, B. et al. Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Vessot, R. F. C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980).

    ADS  Article  Google Scholar 

  36. 36.

    Parker, T. E. Environmental factors and hydrogen maser frequency stability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 745–751 (1999).

    Article  Google Scholar 

  37. 37.

    Lewis, L. L. An introduction to frequency standards. Proc. IEEE 79, 927–935 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from NASA grant NNH12AT81I. We also thank the atomic standards group at NIST for maintaining the H masers and sharing the data. We thank E. Donley, S. Jefferts and C. Oates for providing valuable suggestions that have helped improve this paper. We thank J. Sherman and J. Ye for discussing the planned clock comparisons between NIST and JILA. This work is a contribution of NIST and is not subject to US copyright.

Author information

Affiliations

Authors

Contributions

T.E.P. compiled data from BIPM and analysed maser versus primary frequency standard data. N.A. and B.R.P. carried out the data analysis and performed the calculations that were the basis of the main conclusions of this paper. B.R.P. wrote the manuscript with input from all of the authors, and all authors discussed the results and the conclusions.

Corresponding author

Correspondence to Bijunath R. Patla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Supplementary Tables 1,2, Supplementary Figure 1 and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashby, N., Parker, T.E. & Patla, B.R. A null test of general relativity based on a long-term comparison of atomic transition frequencies. Nature Phys 14, 822–826 (2018). https://doi.org/10.1038/s41567-018-0156-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing