Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aggregation and collapse dynamics of skyrmions in a non-equilibrium state

Abstract

Magnetic skyrmions have attracted attention because of their emergent electromagnetic properties. In particular, non-equilibrium-state skyrmions, which are protected by topology and hence can exist over a wider temperature–magnetic-field region, show promise for possible practical applications, but their dynamics remain elusive. Here, we report the observation of a magnetic-field-induced dynamical transition from the metastable hexagonal-lattice skyrmion crystal (SkX) at a zero bias-field to an amorphous state via the densely vacancy-populated SkX. With decreasing field, on the other hand, the aggregate transforms from ‘random particles’ to ‘microcrystals’ of skyrmions in a non-equilibrium state, in analogy to colloidal crystallization, and subsequently undergoes a topologically distinct phase separation between the SkX and helical/conical domains accompanied by topological defects. These observations directly demonstrate the aggregation and collapse dynamics of metastable skyrmions and may provide a route to other nontrivial topological phenomena such as the zero-magnetic-field topological Hall effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skyrmion crystal (SkX) formation and annihilation in the thermal-equilibrium state in a (110) FeGe thin plate.
Fig. 2: SkX formation at zero-bias field in the FeGe plate.
Fig. 3: Shape and size changes of quenched skyrmions and their aggregation form with the increase of B after the 100 mT field-cooling.
Fig. 4: Collective transformations of random skyrmion aggregates with decreasing bias magnetic field B.

Similar content being viewed by others

References

  1. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  2. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  Google Scholar 

  3. Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  4. Moutafis, C., Komineas, S. & Bland, J. A. C. Dynamics and switching processes for magnetic bubbles in nanoelements. Phys. Rev. B 79, 224429 (2009).

    Article  ADS  Google Scholar 

  5. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2011).

    Article  ADS  Google Scholar 

  6. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  Google Scholar 

  7. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  8. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2011).

    Article  ADS  Google Scholar 

  9. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article  ADS  Google Scholar 

  10. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  ADS  Google Scholar 

  11. Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    Article  Google Scholar 

  12. Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  Google Scholar 

  13. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  ADS  Google Scholar 

  14. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  ADS  Google Scholar 

  15. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  ADS  Google Scholar 

  16. Bolle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotech. 11, 449–454 (2016).

    Article  ADS  Google Scholar 

  17. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    Article  ADS  Google Scholar 

  18. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, 041203(R) (2010).

    Article  ADS  Google Scholar 

  19. Oike, H. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016).

    Article  Google Scholar 

  20. Karube, K. et al. Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet. Nat. Mater. 15, 1237–1242 (2016).

    Article  ADS  Google Scholar 

  21. Romming, N., Kubetzka, A., Hanneken, C., Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  ADS  Google Scholar 

  22. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  ADS  Google Scholar 

  23. Rößler, U. K., Leonov, A. A. & Bogdanov, A. N. Chiral skyrmionic matter in non-centrosymmetric magnets. J. Phys. Conf. Ser. 303, 012105 (2011).

    Article  Google Scholar 

  24. Shibata, K. et al. Temperature and magnetic field dependence of the internal and lattice structures of skyrmions by off-axis electron holography. Phys. Rev. Lett. 118, 087202 (2017).

    Article  ADS  Google Scholar 

  25. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    Article  ADS  Google Scholar 

  26. Elías, R. G. & Verga, A. Magnetization structure of a Bloch point singularity. Eur. Phys. J. 82, 159–166 (2011).

    Article  ADS  Google Scholar 

  27. Ishizuka, K. & Allman, B. Phase measurement in electron microscopy using the transport of intensity equation. J. Electron Microsc. 54, 191–197 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank W. Koshibae and H. Oike for helpful discussions. This work was supported in part by JSPS Grant-in-Aid for Scientific Research(S) no. 24224009.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. conceived the project and wrote the draft. X.Y. designed the experiments, performed Lorentz TEM measurements, analysed Lorentz TEM data and wrote the draft. D.M. and N.K. prepared FeGe samples. T.Y. and K.S. performed LLG simulations. All authors discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Xiuzhen Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information, Supplementary Figures 1–9, Supplementary References 1–2

Supplementary Movie 1

In situ Lorentz TEM movie shows the recrystallization of skyrmion aggregates

Supplementary Movie 2

Micromagnetic simulations for metastable skyrmions in a micromagnet (1,024 nm × 1,024 nm × 128 nm in size) with decreasing the bias field

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Morikawa, D., Yokouchi, T. et al. Aggregation and collapse dynamics of skyrmions in a non-equilibrium state. Nature Phys 14, 832–836 (2018). https://doi.org/10.1038/s41567-018-0155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0155-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing