Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant magnetic response of a two-dimensional antiferromagnet


A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter1. Such coupling is possible via the Dzyaloshinskii–Moriya (DM) interaction2,3, but at the expense of reduced antiferromagnetic (AFM) susceptibility due to the canting-induced spin anisotropy4. We solve this long-standing problem with a top-down approach that utilizes spin–orbit coupling in the presence of a hidden SU(2) symmetry. We demonstrate giant AFM responses to sub-tesla external fields by exploiting the extremely strong two-dimensional critical fluctuations preserved under a symmetry-invariant exchange anisotropy, which is built into a square lattice artificially synthesized as a superlattice of SrIrO3 and SrTiO3. The observed field-induced logarithmic increase of the ordering temperature enables highly efficient control of the AFM order. Our results demonstrate that symmetry can be exploited in spin–orbit-coupled magnets to develop functional AFM materials for fast and secured spintronic devices5,6,7,8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design and realization of spin canting without spin anisotropy via a SU(2)-invariant DM interaction.
Fig. 2: Magnetic diffraction in applied magnetic fields.
Fig. 3: Theoretical analysis and experimental confirmation.


  1. 1.

    Néel, L. in Nobel Lectures, Physics, 1963–1970 318–341 (Elsevier, Amsterdam, 1972).

  2. 2.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    ADS  Article  Google Scholar 

  3. 3.

    Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    ADS  Article  Google Scholar 

  4. 4.

    Ren, Y. et al. Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396, 441–444 (1998).

    ADS  Article  Google Scholar 

  5. 5.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  10. 10.

    Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin–orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Basov, D. N., Averitt, R. D., & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  13. 13.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    ADS  Article  Google Scholar 

  14. 14.

    Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    ADS  Article  Google Scholar 

  15. 15.

    Povarov, K. Y., Smirnov, A. I. & Landee, C. P. Switching of anisotropy and phase diagram of the Heisenberg square-lattice S = 1/2 antiferromagnet Cu(pz)2(ClO4)2. Phys. Rev. B 87, 214402 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Wadhawan, V. Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000).

  17. 17.

    Shekhtman, L., Entin-Wohlman, O. SpringerAmpamp; Aharony, A. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836–839 (1992).

    ADS  Article  Google Scholar 

  18. 18.

    Hao, L. et al. Two-dimensional J eff = 1/2 antiferromagnetic insulator unraveled from interlayer exchange coupling in artificial perovskite iridate superlattices. Phys. Rev. Lett. 119, 027204 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Katukuri, V. M. et al. Mechanism of basal-plane antiferromagnetism in the spin–orbit driven iridate Ba2IrO4. Phys. Rev. X 4, 021051 (2014).

    Google Scholar 

  21. 21.

    Bogdanov, N. A. et al. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers. Nat. Commun. 6, 7306 (2015).

    Article  Google Scholar 

  22. 22.

    Solovyev, I. V., Mazurenko, V. V. & Katanin, A. A. Validity and limitations of the superexchange model for the magnetic properties of Sr2IrO4 and Ba2IrO4 mediated by the strong spin–orbit coupling. Phys. Rev. B 92, 235109 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    Kim, J. W. et al. Dimensionality driven spin-flop transition in layered iridates. Phys. Rev. Lett. 109, 037204 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Boseggia, S. et al. Robustness of basal-plane antiferromagnetic order and the J eff = 1/2 state in single-layer iridate spin–orbit Mott insulators. Phys. Rev. Lett. 110, 117207 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: Magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Matsuno, J. et al. Engineering a spin–orbital magnetic insulator by tailoring superlattices. Phys. Rev. Lett. 114, 247209 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Hayden, S. M. et al. Comparison of the high-frequency magnetic fluctuations in insulating and superconducting La2-xSrxCuO4. Phys. Rev. Lett. 76, 1344–1347 (1996).

    ADS  Article  Google Scholar 

  30. 30.

    Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, New York, NY, 2006).

  31. 31.

    Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic X-ray scattering: Establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Meyers, D. et al. Magnetism in artificial Ruddlesden–Popper iridates leveraged by structural distortions. Preprint at (2017).

  33. 33.

    Hikami, S. & Tsuneto, T. Phase transition of quasi-two dimensional planar system. Progress. Theor. Phys. 63, 387–401 (1980).

  34. 34.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, L. et al. Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations. Comput. Mater. Sci. 118, 309–315 (2016).

    Article  Google Scholar 

  37. 37.

    Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Cryst. B B28, 3384–3392 1972).

    Article  Google Scholar 

  38. 38.

    Glazer, A. M. Simple ways of determining perovskite structures. Acta Cryst. A 31, 756–762 1975).

    Article  Google Scholar 

  39. 39.

    Brahlek, M., Choquette, A. K., Smith, C. R., Engel-Herbert, R. & May, S. J. Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J. Appl. Phys. 121, 045303 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Fujiyama, S. et al. Two-dimensional Heisenberg behavior of J eff = 1/2 isospins in the paramagnetic state of the spin–orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 108, 247212 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Takayama, T., Matsumoto, A., Jackeli, G. & Takagi, H. Model analysis of magnetic susceptibility of Sr2IrO4: A two-dimensional J eff = 1/2 Heisenberg system with competing interlayer couplings. Phys. Rev. B 94, 224420 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Bahr, S. et al. Low-energy magnetic excitations in the spin–orbital Mott insulator Sr2IrO4. Phys. Rev. B 89, 180401 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Gim, Y. et al. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr2IrO4: Raman scattering studies. Phys. Rev. B 93, 024405 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Kosterlitz, J. M. The critical properties of the two-dimensional XY model. J. Phys. C7, 1046–1066 (1974).

    ADS  Google Scholar 

  45. 45.

    Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

    ADS  Article  Google Scholar 

  46. 46.

    Cuccoli, A., Tognetti, V. & Vaia, R. Two-dimensional XXZ model on a square lattice: A Monte Carlo simulation. Phys. Rev. B 52, 10221–10231 (1995).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge experimental assistance from H. D. Zhou, E. Karapetrova, C. Rouleau, Z. Gai, J. K. Keum and N. Traynor. The authors would like to thank E. Dagotto, I. Zalzinyak, D. McMorrow, J.-H. Chu and H. D. Zhou for fruitful discussions. J.L. acknowledges support by the start-up fund and the Transdisciplinary Academy Program at the University of Tennessee. J.L. and H.X. acknowledge support by the Organized Research Unit Program at the University of Tennessee and support by the DOD-DARPA under grant no. HR0011-16-1-0005. M.P.M.D. and D.M. are supported by the US Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under award number 1047478. H.S. and C.D.B. are supported by funding from the Lincoln Chair of Excellence in Physics. D.K. and L.H. acknowledge the support by the ERDF (project CZ.02.1.01/0.0/0.0/15_003/0000485) and the Grant Agency of the Czech Republic grant (14-37427 G). A portion of the work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE, OS by Argonne National Laboratory, was supported by the U. S. DOE under contract no. DE-AC02-06CH11357.

Author information




C.D.B., M.P.M.D. and J.L. conceived and directed the study. L.H., D.M., J.Y. and C.F. undertook sample growth and characterization. L.H., D.M., J.Y., J.W.K. and P.J.R. performed magnetic scattering measurements. L.H., D.M., G.F., Y.S.C. and D.H. conducted XMCD measurements. L.H., D.M., J.Y., L.H. and D.K. collected synchrotron XRD data. L.H. and J.L. analysed data. H.S. and C.D.B. performed Monte Carlo simulations. T.R.D. and H.X. performed first-principles calculations. L.H., H.S., C.D.B., M.P.M.D. and J.L. wrote the manuscript.

Corresponding authors

Correspondence to Haixuan Xu or Cristian D. Batista or M. P. M. Dean or Jian Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Material

6 Figures, 7 References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Meyers, D., Suwa, H. et al. Giant magnetic response of a two-dimensional antiferromagnet. Nature Phys 14, 806–810 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing