Abstract

A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter1. Such coupling is possible via the Dzyaloshinskii–Moriya (DM) interaction2,3, but at the expense of reduced antiferromagnetic (AFM) susceptibility due to the canting-induced spin anisotropy4. We solve this long-standing problem with a top-down approach that utilizes spin–orbit coupling in the presence of a hidden SU(2) symmetry. We demonstrate giant AFM responses to sub-tesla external fields by exploiting the extremely strong two-dimensional critical fluctuations preserved under a symmetry-invariant exchange anisotropy, which is built into a square lattice artificially synthesized as a superlattice of SrIrO3 and SrTiO3. The observed field-induced logarithmic increase of the ordering temperature enables highly efficient control of the AFM order. Our results demonstrate that symmetry can be exploited in spin–orbit-coupled magnets to develop functional AFM materials for fast and secured spintronic devices5,6,7,8,9.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Néel, L. in Nobel Lectures, Physics, 1963–1970 318–341 (Elsevier, Amsterdam, 1972).

  2. 2.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  3. 3.

    Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

  4. 4.

    Ren, Y. et al. Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396, 441–444 (1998).

  5. 5.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

  6. 6.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

  7. 7.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

  8. 8.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  9. 9.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

  10. 10.

    Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin–orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).

  11. 11.

    Basov, D. N., Averitt, R. D., & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

  12. 12.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

  13. 13.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

  14. 14.

    Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

  15. 15.

    Povarov, K. Y., Smirnov, A. I. & Landee, C. P. Switching of anisotropy and phase diagram of the Heisenberg square-lattice S = 1/2 antiferromagnet Cu(pz)2(ClO4)2. Phys. Rev. B 87, 214402 (2013).

  16. 16.

    Wadhawan, V. Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000).

  17. 17.

    Shekhtman, L., Entin-Wohlman, O. SpringerAmpamp; Aharony, A. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett. 69, 836–839 (1992).

  18. 18.

    Hao, L. et al. Two-dimensional J eff = 1/2 antiferromagnetic insulator unraveled from interlayer exchange coupling in artificial perovskite iridate superlattices. Phys. Rev. Lett. 119, 027204 (2017).

  19. 19.

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

  20. 20.

    Katukuri, V. M. et al. Mechanism of basal-plane antiferromagnetism in the spin–orbit driven iridate Ba2IrO4. Phys. Rev. X 4, 021051 (2014).

  21. 21.

    Bogdanov, N. A. et al. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers. Nat. Commun. 6, 7306 (2015).

  22. 22.

    Solovyev, I. V., Mazurenko, V. V. & Katanin, A. A. Validity and limitations of the superexchange model for the magnetic properties of Sr2IrO4 and Ba2IrO4 mediated by the strong spin–orbit coupling. Phys. Rev. B 92, 235109 (2015).

  23. 23.

    Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

  24. 24.

    Kim, J. W. et al. Dimensionality driven spin-flop transition in layered iridates. Phys. Rev. Lett. 109, 037204 (2012).

  25. 25.

    Boseggia, S. et al. Robustness of basal-plane antiferromagnetic order and the J eff = 1/2 state in single-layer iridate spin–orbit Mott insulators. Phys. Rev. Lett. 110, 117207 (2013).

  26. 26.

    Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: Magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

  27. 27.

    Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012).

  28. 28.

    Matsuno, J. et al. Engineering a spin–orbital magnetic insulator by tailoring superlattices. Phys. Rev. Lett. 114, 247209 (2015).

  29. 29.

    Hayden, S. M. et al. Comparison of the high-frequency magnetic fluctuations in insulating and superconducting La2-xSrxCuO4. Phys. Rev. Lett. 76, 1344–1347 (1996).

  30. 30.

    Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, New York, NY, 2006).

  31. 31.

    Kim, J. et al. Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic X-ray scattering: Establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).

  32. 32.

    Meyers, D. et al. Magnetism in artificial Ruddlesden–Popper iridates leveraged by structural distortions. Preprint at https://arxiv.org/abs/1707.08910 (2017).

  33. 33.

    Hikami, S. & Tsuneto, T. Phase transition of quasi-two dimensional planar system. Progress. Theor. Phys. 63, 387–401 (1980).

  34. 34.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  35. 35.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  36. 36.

    Zhang, L. et al. Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations. Comput. Mater. Sci. 118, 309–315 (2016).

  37. 37.

    Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Cryst. B B28, 3384–3392 1972).

  38. 38.

    Glazer, A. M. Simple ways of determining perovskite structures. Acta Cryst. A 31, 756–762 1975).

  39. 39.

    Brahlek, M., Choquette, A. K., Smith, C. R., Engel-Herbert, R. & May, S. J. Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J. Appl. Phys. 121, 045303 (2017).

  40. 40.

    Fujiyama, S. et al. Two-dimensional Heisenberg behavior of J eff = 1/2 isospins in the paramagnetic state of the spin–orbital Mott insulator Sr2IrO4. Phys. Rev. Lett. 108, 247212 (2012).

  41. 41.

    Takayama, T., Matsumoto, A., Jackeli, G. & Takagi, H. Model analysis of magnetic susceptibility of Sr2IrO4: A two-dimensional J eff = 1/2 Heisenberg system with competing interlayer couplings. Phys. Rev. B 94, 224420 (2016).

  42. 42.

    Bahr, S. et al. Low-energy magnetic excitations in the spin–orbital Mott insulator Sr2IrO4. Phys. Rev. B 89, 180401 (2014).

  43. 43.

    Gim, Y. et al. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr2IrO4: Raman scattering studies. Phys. Rev. B 93, 024405 (2016).

  44. 44.

    Kosterlitz, J. M. The critical properties of the two-dimensional XY model. J. Phys. C7, 1046–1066 (1974).

  45. 45.

    Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

  46. 46.

    Cuccoli, A., Tognetti, V. & Vaia, R. Two-dimensional XXZ model on a square lattice: A Monte Carlo simulation. Phys. Rev. B 52, 10221–10231 (1995).

Download references

Acknowledgements

The authors acknowledge experimental assistance from H. D. Zhou, E. Karapetrova, C. Rouleau, Z. Gai, J. K. Keum and N. Traynor. The authors would like to thank E. Dagotto, I. Zalzinyak, D. McMorrow, J.-H. Chu and H. D. Zhou for fruitful discussions. J.L. acknowledges support by the start-up fund and the Transdisciplinary Academy Program at the University of Tennessee. J.L. and H.X. acknowledge support by the Organized Research Unit Program at the University of Tennessee and support by the DOD-DARPA under grant no. HR0011-16-1-0005. M.P.M.D. and D.M. are supported by the US Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under award number 1047478. H.S. and C.D.B. are supported by funding from the Lincoln Chair of Excellence in Physics. D.K. and L.H. acknowledge the support by the ERDF (project CZ.02.1.01/0.0/0.0/15_003/0000485) and the Grant Agency of the Czech Republic grant (14-37427 G). A portion of the work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE, OS by Argonne National Laboratory, was supported by the U. S. DOE under contract no. DE-AC02-06CH11357.

Author information

Affiliations

  1. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA

    • Lin Hao
    • , Hidemaro Suwa
    • , Junyi Yang
    • , Clayton Frederick
    • , Cristian D. Batista
    •  & Jian Liu
  2. Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, USA

    • D. Meyers
    • , Gilberto Fabbris
    •  & M. P. M. Dean
  3. Department of Physics, University of Tokyo, Tokyo, Japan

    • Hidemaro Suwa
  4. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA

    • Tamene R. Dasa
    •  & Haixuan Xu
  5. Department of Condensed Matter Physics, Charles University, Prague, Czech Republic

    • Lukas Horak
    •  & Dominik Kriegner
  6. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

    • Dominik Kriegner
  7. Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA

    • Yongseong Choi
    • , Jong-Woo Kim
    • , Daniel Haskel
    •  & Philip J. Ryan
  8. School of Physical Sciences, Dublin City University, Dublin, Ireland

    • Philip J. Ryan
  9. Quantum Condensed Matter Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • Cristian D. Batista

Authors

  1. Search for Lin Hao in:

  2. Search for D. Meyers in:

  3. Search for Hidemaro Suwa in:

  4. Search for Junyi Yang in:

  5. Search for Clayton Frederick in:

  6. Search for Tamene R. Dasa in:

  7. Search for Gilberto Fabbris in:

  8. Search for Lukas Horak in:

  9. Search for Dominik Kriegner in:

  10. Search for Yongseong Choi in:

  11. Search for Jong-Woo Kim in:

  12. Search for Daniel Haskel in:

  13. Search for Philip J. Ryan in:

  14. Search for Haixuan Xu in:

  15. Search for Cristian D. Batista in:

  16. Search for M. P. M. Dean in:

  17. Search for Jian Liu in:

Contributions

C.D.B., M.P.M.D. and J.L. conceived and directed the study. L.H., D.M., J.Y. and C.F. undertook sample growth and characterization. L.H., D.M., J.Y., J.W.K. and P.J.R. performed magnetic scattering measurements. L.H., D.M., G.F., Y.S.C. and D.H. conducted XMCD measurements. L.H., D.M., J.Y., L.H. and D.K. collected synchrotron XRD data. L.H. and J.L. analysed data. H.S. and C.D.B. performed Monte Carlo simulations. T.R.D. and H.X. performed first-principles calculations. L.H., H.S., C.D.B., M.P.M.D. and J.L. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Haixuan Xu or Cristian D. Batista or M. P. M. Dean or Jian Liu.

Supplementary information

  1. Supplementary Material

    6 Figures, 7 References

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41567-018-0152-6