Abstract

Optical excitation at terahertz frequencies has emerged as an effective means to dynamically manipulate complex materials. In the molecular solid K3C60, short mid-infrared pulses transform the high-temperature metal into a non-equilibrium state with the optical properties of a superconductor. Here we tune this effect with hydrostatic pressure and find that the superconducting-like features gradually disappear at around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth induced by pressure is also detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesized previously, and rather extends all the way to room temperature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 15 May 2018

    In the version of this Article originally published, the superscript 6 indicating equally contributing authors was missing from M. Buzzi. This has now been corrected.

References

  1. 1.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

  2. 2.

    Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

  3. 3.

    Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

  4. 4.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

  5. 5.

    Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104(R) (2011).

  6. 6.

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

  7. 7.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

  8. 8.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

  9. 9.

    Coulthard, J. R., Clark, S. R., Al-Assam, S., Cavalleri, A. & Jaksch, D. Enhancement of superexchange pairing in the periodically driven Hubbard model. Phys. Rev. B 96, 85104 (2017).

  10. 10.

    Knap, M., Babadi, M., Refael, G., Martin, I. & Demler, E. Dynamical Cooper pairing in nonequilibrium electron–phonon systems. Phys. Rev. B 94, 214504 (2016).

  11. 11.

    Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

  12. 12.

    Kaiser, S. et al. Optical properties of a vibrationally modulated solid state Mott insulator. Sci. Rep. 4, 3823 (2014).

  13. 13.

    Singla, R. et al. THz-frequency modulation of the Hubbard U in an organic Mott insulator. Phys. Rev. Lett. 115, 187401 (2015).

  14. 14.

    Pomarico, E. et al. Enhanced electron–phonon coupling in graphene with periodically distorted lattice. Phys. Rev. B 95, 24304 (2017).

  15. 15.

    Nava, A., Giannetti, C., Georges, A., Tosatti, E. & Fabrizio, M. Cooling quasiparticles in A3C60 fullerides by excitonic mid-infrared absorption. Nat. Phys. 14, 154–159 (2018).

  16. 16.

    Degiorgi, L., Briceno, G., Fuhrer, M. S., Zettl, A. & Wachter, P. Optical measurements of the superconducting gap in single-crystal K3C60 and Rb3C60. Nature 369, 541–543 (1994).

  17. 17.

    Nomura, Y., Sakai, S., Capone, M. & Arita, R. Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles. Sci. Adv. 1, e1500568 (2015).

  18. 18.

    Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).

  19. 19.

    Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

  20. 20.

    Degiorgi, L. et al. Optical properties of the alkali-metal-doped superconducting fullerenes: K3C60 and Rb3C60. Phys. Rev. B 49, 7012–7025 (1994).

  21. 21.

    Lorenz, B.. & Chu, C. W. in Frontiers in Superconducting Materials (ed. Narlikar, A. V.) 459–497 (Springer, Berlin, 2004).

  22. 22.

    Schilling, J. S. in Handbook of High-Temperature Superconductivity (ed. Schrieffer, J. R.) 427–462 (Springer, New York, NY, 2006).

  23. 23.

    Potočnik, A. et al. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal–Mott insulator boundary. Sci. Rep. 4, 4265 (2015).

  24. 24.

    Zhou, O. et al. Compressibility of M3C60 fullerene superconductors: relation between T c and lattice parameter. Science 255, 833–835 (1992).

  25. 25.

    Oshiyama, A. & Saito, S. Linear dependence of superconducting transition temperature on Fermi-level density-of-states in alkali-doped C60. Solid State Commun. 82, 41–45 (1992).

  26. 26.

    Kim, M. et al. Enhancing superconductivity in A3C60 fullerides. Phys. Rev. B 94, 155152 (2016).

  27. 27.

    Mazza, G. & Georges, A. Nonequilibrium superconductivity in driven alkali-doped fullerides. Phys. Rev. B 96, 1–10 (2017).

  28. 28.

    Stephens, P. W. et al. Structure of single-phase superconducting K3C60. Nature 351, 632–634 (1991).

  29. 29.

    Sparn, G. et al. Pressure dependence of superconductivity in single-phase K3C60. Science 252, 1829–1831 (1991).

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft via the excellence cluster The Hamburg Centre for Ultrafast Imaging—Structure, Dynamics and Control of Matter at the Atomic Scale and Priority Programme SFB925. M.B. acknowledges financial support from the Swiss National Science Foundation through an Early Postdoc Mobility Grant (P2BSP2_165352).

Author information

Author notes

  1. These authors contributed equally: A. Cantaluppi, M. Buzzi.

Affiliations

  1. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

    • A. Cantaluppi
    • , M. Buzzi
    • , G. Jotzu
    • , D. Nicoletti
    • , M. Mitrano
    •  & A. Cavalleri
  2. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany

    • A. Cantaluppi
    • , D. Nicoletti
    •  & A. Cavalleri
  3. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy

    • D. Pontiroli
    •  & M. Riccò
  4. INSTM UdR Trieste-ST and Elettra–Sincrotrone Trieste, Trieste, Italy

    • A. Perucchi
    •  & P. Di Pietro
  5. Department of Physics, Oxford University, Clarendon Laboratory, Oxford, UK

    • A. Cavalleri

Authors

  1. Search for A. Cantaluppi in:

  2. Search for M. Buzzi in:

  3. Search for G. Jotzu in:

  4. Search for D. Nicoletti in:

  5. Search for M. Mitrano in:

  6. Search for D. Pontiroli in:

  7. Search for M. Riccò in:

  8. Search for A. Perucchi in:

  9. Search for P. Di Pietro in:

  10. Search for A. Cavalleri in:

Contributions

A. Cavalleri conceived the project together with M.M. and A. Cantaluppi. The time-resolved THz setup was built by A. Cantaluppi and M.B., who both made the pump–probe measurements and analysed the data with the support of G.J. and D.N. The equilibrium optical properties were measured by A. Cantaluppi and M.M., with the support of A.P. and P.D.P., and were then analysed by A. Cantaluppi and M.B. The samples were grown and characterized by D.P. and M.R. The manuscript was written by A. Cantaluppi, M.B., D.N. and A. Cavalleri, with input from all co-authors.

Competing financial interest

The authors declare no competing financial interests.

Corresponding author

Correspondence to A. Cavalleri.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–11, Supplementary Tables 1 and 2, Supplementary References 1–12

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0134-8