Monolayers of transition-metal dichalcogenides feature exceptional optical properties that are dominated by tightly bound electron–hole pairs, called excitons. Creating van der Waals heterostructures by deterministically stacking individual monolayers can tune various properties via the choice of materials1 and the relative orientation of the layers2,3. In these structures, a new type of exciton emerges where the electron and hole are spatially separated into different layers. These interlayer excitons4,5,6 allow exploration of many-body quantum phenomena7,8 and are ideally suited for valleytronic applications9. A basic model of a fully spatially separated electron and hole stemming from the K valleys of the monolayer Brillouin zones is usually applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first-principles calculations to expand the concept of interlayer excitons. We identify a partially charge-separated electron–hole pair in MoS2/WSe2 heterostructures where the hole resides at the Γ point and the electron is located in a K valley. We control the emission energy of this new type of momentum-space indirect, yet strongly bound exciton by variation of the relative orientation of the layers. These findings represent a crucial step towards the understanding and control of excitonic effects in van der Waals heterostructures and devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  2. 2.

    van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

  3. 3.

    Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

  4. 4.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  5. 5.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  6. 6.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

  7. 7.

    Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).

  8. 8.

    Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

  9. 9.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  10. 10.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

  11. 11.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  12. 12.

    Mak, K. F. et al. Atomically thin MoS2 a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  13. 13.

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

  14. 14.

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

  15. 15.

    Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

  16. 16.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

  17. 17.

    Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

  18. 18.

    Yeh, P.-C. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 16, 953–959 (2016).

  19. 19.

    Zhu, X., Fahy, S. & Louie, S. G. Ab initio calculation of pressure coefficients of band gaps of silicon: Comparison of the local-density approximation and quasiparticle results. Phys. Rev. B 39, 7840–7847 (1989).

  20. 20.

    Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

  21. 21.

    Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

  22. 22.

    Miller, B. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

  23. 23.

    Hanbicki, A. T. et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. Preprint at https://arxiv.org/abs/1802.05310 (2018).

  24. 24.

    Zhang, X.-X., You, Y., Zhao, S. Y. F. & Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

  25. 25.

    Arora, A. et al. Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7, 10421–10429 (2015).

  26. 26.

    Kira, M., Jahnke, F. & Koch, S. W. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett. 81, 3263–3266 (1998).

  27. 27.

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

  28. 28.

    Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

  29. 29.

    Steinleitner, P. et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 17, 1455–1460 (2017).

  30. 30.

    Andersen, K., Latini, S. & Thygesen, K. S. Dielectric genome of van der Waals heterostructures. Nano Lett. 15, 4616–4621 (2015).

  31. 31.

    Rasmussen, F. A. & Thygesen, K. S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015).

  32. 32.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

  33. 33.

    Plechinger, G. et al. Optical spectroscopy of interlayer coupling in artificially stacked MoS2 layers. 2D Mater. 2, 034016 (2015).

  34. 34.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  35. 35.

    Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

  36. 36.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  37. 37.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  38. 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Download references


The work is financially supported by the German Research Foundation (DFG) under grant numbers SE 651/45-1, GRK 1570, KO 3612/1-1 and KO 3612/3-1. G.S. gratefully acknowledges financial support by the Ministry of Education and Science of the Russian Federation (grant no. K3-2017-064). Computational resources for this project were provided by ZIH Dresden.

Author information

Author notes

  1. These authors contributed equally: Jens Kunstmann, Fabian Mooshammer.


  1. Theoretical Chemistry, Department of Chemistry and Food Chemistry, TU Dresden, Dresden, Germany

    • Jens Kunstmann
    • , Frederick Stein
    •  & Gotthard Seifert
  2. Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Regensburg, Germany

    • Fabian Mooshammer
    • , Philipp Nagler
    • , Nicola Paradiso
    • , Gerd Plechinger
    • , Christoph Strunk
    • , Christian Schüller
    •  & Tobias Korn
  3. Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil

    • Andrey Chaves
  4. Department of Chemistry, Columbia University, New York, NY, USA

    • Andrey Chaves
    •  & David R. Reichman
  5. National University of Science and Technology, MISIS, Moscow, Russia

    • Gotthard Seifert


  1. Search for Jens Kunstmann in:

  2. Search for Fabian Mooshammer in:

  3. Search for Philipp Nagler in:

  4. Search for Andrey Chaves in:

  5. Search for Frederick Stein in:

  6. Search for Nicola Paradiso in:

  7. Search for Gerd Plechinger in:

  8. Search for Christoph Strunk in:

  9. Search for Christian Schüller in:

  10. Search for Gotthard Seifert in:

  11. Search for David R. Reichman in:

  12. Search for Tobias Korn in:


F.M., P.N., C. Schüller and T.K. conceived the experiments. F.M. fabricated the samples and performed the optical spectroscopy and data analysis together with P.N., G.P. and T.K. N.P. and C. Strunk annealed samples and performed AFM measurements. J.K. performed the DFT calculations together with F.S. and G.S., interpreted the results and supervised the theoretical analysis. A.C. carried out the exciton modelling under the supervision of D.R.R. using parameters provided by J.K. J.K. D.R.R. and T.K. wrote the paper together with F.M. and P.N. All authors discussed the results.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jens Kunstmann or Tobias Korn.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–13, Supplementary Tables 1 and 2, Supplementary References

About this article

Publication history