On-demand quantum state transfer and entanglement between remote microwave cavity memories


Coupling isolated quantum systems through propagating photons is a central theme in quantum science1,2, with the potential for groundbreaking applications such as distributed, fault-tolerant quantum computing3,4,5. To date, photons have been used widely to realize high-fidelity remote entanglement6,7,8,9,10,11,12 and state transfer13,14,15 by compensating for inefficiency with conditioning, a fundamentally probabilistic strategy that places limits on the rate of communication. In contrast, here we experimentally realize a long-standing proposal for deterministic, direct quantum state transfer16. Using efficient, parametrically controlled emission and absorption of microwave photons, we show on-demand, high-fidelity state transfer and entanglement between two isolated superconducting cavity quantum memories. The transfer rate is faster than the rate of photon loss in either memory, an essential requirement for complex networks. By transferring states in a multiphoton encoding, we further show that the use of cavity memories and state-independent transfer creates the striking opportunity to deterministically mitigate transmission loss with quantum error correction. Our results establish a compelling approach for deterministic quantum communication across networks, and will enable modular scaling of superconducting quantum circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: On-demand state transfer by parametric conversion.
Fig. 2: Temporal mode-matching of the sender and the receiver.
Fig. 3: Establishing a quantum communication channel.
Fig. 4: Transferring error-correctable states.


  1. 1.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A. 76, 062323 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A. 89, 022317 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).

    Google Scholar 

  13. 13.

    Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Stute, A. et al. Quantum-state transfer from an ion to a photon. Nat. Photon. 7, 219–222 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Article  Google Scholar 

  17. 17.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  18. 18.

    Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Srinivasan, S. J. et al. Time-reversal symmetrization of spontaneous emission for quantum state transfer. Phys. Rev. A. 89, 033857 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

    Article  Google Scholar 

  21. 21.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Flurin, E., Roch, N., Pillet, J. D., Mallet, F. & Huard, B. Superconducting quantum node for entanglement and storage of microwave radiation. Phys. Rev. Lett. 114, 090503 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Reed, A. P. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 13, 1163–1167 (2017).

    Article  Google Scholar 

  24. 24.

    Axline, C. et al. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. 109, 042601 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Bishop, L. S., Ginossar, E. & Girvin, S. M. Response of the strongly driven Jaynes–Cummings oscillator. Phys. Rev. Lett. 105, 100505 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Sank, D. et al. Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).

    Google Scholar 

  31. 31.

    Campagne-Ibarcq, P. et al. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Preprint at http://arxiv.org/abs/1712.05854 (2017).

  32. 32.

    Kurpiers, P. et al. Deterministic quantum state transfer and generation of remote entanglement using microwave photons. Preprint at http://arxiv.org/abs/1712.08593 (2017).

  33. 33.

    Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    Article  Google Scholar 

  34. 34.

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS  Article  Google Scholar 

  35. 35.

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  Article  Google Scholar 

  36. 36.

    Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996).

    ADS  Article  Google Scholar 

Download references


The authors would like to acknowledge valuable discussions with C. Zhou, A. Narla, S. Shankar and K.W. Lehnert. This work was supported by the US Army Research Office (W911NF-14-1-0011). C.J.A. was supported by the NSF Graduate Research Fellowship (DGE-1122492); L.D.B. by the ARO QuaCGR Fellowship; W.P. by the NSF (PHY1309996) and by a fellowship instituted with a Max Planck Research Award from the Alexander von Humboldt Foundation; W.P., P.R. and M.Z. by the US Air Force Office of Scientific Research (FA9550-15-1-0015); S.M.G by the NSF (DMR-1609326); L.J. by the Alfred P. Sloan Foundation (BR2013-049) and the Packard Foundation (2013-39273). Facilities use was supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and the Yale SEAS cleanroom.

Author information




C.J.A., L.D.B. and W.P. performed the experiment and analysed the data under the supervision of R.J.S. C.J.A. and L.F. fabricated the transmon qubits. M.Z. assisted in data analysis and ran supporting simulations. M.Z., S.M.G. and L.J. provided theory support. K.C. assisted in development of a Wigner reconstruction algorithm. P.C.-I. contributed to the experimental design under the supervision of M.H.D. P.R. developed optimal control pulse software and implemented field measurement capability. C.J.A., L.D.B., W.P. and R.J.S. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Christopher J. Axline or Luke D. Burkhart or Wolfgang Pfaff or R. J. Schoelkopf.

Ethics declarations

Competing interests

R.J.S., M.H.D. and L.F. are founders, and R.J.S. and L.F. are equity shareholders of Quantum Circuits, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Supplementary figures, Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Axline, C.J., Burkhart, L.D., Pfaff, W. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nature Phys 14, 705–710 (2018). https://doi.org/10.1038/s41567-018-0115-y

Download citation

Further reading