Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new spin for oxide interfaces

The variety of emergent phenomena occurring at oxide interfaces has made these systems the focus of intense study in recent years. We argue that spin–orbit effects in oxide interfaces provide a versatile handle to generate, control and convert spin currents, with a view towards low-power spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scattering time and Rashba coefficients for various two-dimensional systems.
Fig. 2: Generating a spin current in a SrTiO3 2DEG.
Fig. 3: Emergent quantum phenomena in SrTiO3-based 2DEGs.

References

  1. 1.

    Hwang, H. Y. et al. Nat. Mater. 11, 103–113 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    Santander-Syro, A. F. et al. Nature 469, 189–193 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Ohtomo, A. & Hwang, H. Y. Nature 427, 423–426 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. Nat. Mater. 14, 871–882 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Edelstein, V. M. M. Solid State Commun. 73, 233–235 (1990).

    ADS  Article  Google Scholar 

  6. 6.

    Manipatruni, S., Nikonov, D. E., Ramesh, R., Li, H. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).

  7. 7.

    Rojas-Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).

    Google Scholar 

  8. 8.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  9. 9.

    Ganichev, S. D. et al. Nature 417, 153–156 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    Santander-Syro, A. F. et al. Nat. Mater. 13, 1085–1090 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Chen, Y. Z. et al. Nat. Commun. 4, 1371 (2013).

    Article  Google Scholar 

  12. 12.

    Şahin, C., Vignale, G. & Flatté, M. E. Phys. Rev. B 89, 155402 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Reyren, N. et al. Phys. Rev. Lett. 108, 186802 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Inoue, H. et al. Phys. Rev. X 5, 041023 (2015).

    Google Scholar 

  15. 15.

    Kamerbeek, A. M. et al. Phys. Rev. Lett. 115, 136601 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Han, W. et al. Nat. Commun. 4, 2134 (2013).

    Google Scholar 

  17. 17.

    Jin, M.-J. et al. Nano Lett. 17, 36–43 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Lesne, E. et al. Nat. Mater. 15, 1261–1266 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Chauleau, J.-Y. et al. Europhys. Lett. 116, 17006 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Zhang, W. et al. Appl. Phys. Lett. 109, 262402 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Song, Q. et al. Sci. Adv. 3, e1602312 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Ohshima, R. et al. Nat. Mater. 16, 609–614 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Caviglia, A. D. et al. Phys. Rev. Lett. 104, 126803 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Hurand, S. et al. Sci. Rep. 5, 12751 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Gopinadhan, K. et al. Adv. Mater. 3, 1500114 (2015).

    Google Scholar 

  26. 26.

    Liang, H. et al. Phys. Rev. B 92, 075309 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Shanavas, K. V., Popović, Z. S. & Satpathy, S. Phys. Rev. B 90, 165108 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Zhong, Z. et al. Phys. Rev. B 87, 161102(R) (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Bucheli, D., Grilli, M., Peronaci, F., Seibold, G. & Caprara, S. Phys. Rev. B 89, 195448 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. Nat. Commun. 3, 1129 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    King, P. D. C. et al. Nat. Commun. 5, 3414 (2014).

    Google Scholar 

  32. 32.

    Narayanapillai, K. et al. Appl. Phys. Lett. 105, 162405 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    Wang, Y. et al. Nano Lett. 17, 7659–7664 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Vivek, M., Goerbig, M. O. & Gabay, M. Phys. Rev. B 95, 165117 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Kondou, K. et al. Nat. Phys. 12, 1027–1031 (2016).

    Article  Google Scholar 

  36. 36.

    Rischau, C. W. et al. Nat. Phys. 13, 643–648 (2017).

    Article  Google Scholar 

  37. 37.

    Tra, V. T. et al. Adv. Mater. 25, 3357–3364 (2013).

    Article  Google Scholar 

  38. 38.

    da Silveira, L. G. D., Barone, P. & Picozzi, S. Phys. Rev. B 93, 245159 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Adv. Mater. 25, 509–513 (2013).

    Article  Google Scholar 

  40. 40.

    Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Nano Lett. 16, 1663–1668 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Zhang, X., Abdalla, L. B., Liu, Q. & Zunger, A. Adv. Funct. Mater. 27, 1701266 (2017).

    Article  Google Scholar 

  42. 42.

    Bowen, M. et al. Appl. Phys. Lett. 82, 233–235 (2003).

    ADS  Article  Google Scholar 

  43. 43.

    Bibes, M. et al. Appl. Phys. Lett. 83, 2629–2631 (2003).

    ADS  Article  Google Scholar 

  44. 44.

    Heron, J. T. et al. Nature 516, 370–373 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Nat. Phys. https://doi.org/10.1038/s41567-018-0101-4 (2018).

  46. 46.

    Blank, D. H. A., Dekkers, M. & Rijnders, G. J. Phys. D. Appl. Phys. 47, 34006 (2014).

    Article  Google Scholar 

  47. 47.

    Mohanta, N. & Taraphder, A. Europhys. Lett. 108, 60001 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Studer, M., Salis, G., Ensslin, K., Driscoll, D. C. & Gossard, A. C. Phys. Rev. Lett. 103, 027201 (2009).

    ADS  Article  Google Scholar 

  49. 49.

    Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Phys. Rev. Lett. 89, 046801 (2002).

    ADS  Article  Google Scholar 

  50. 50.

    Schultz, M. et al. Semicond. Sci. Technol. 11, 1168–1172 (1996).

    ADS  Article  Google Scholar 

  51. 51.

    Radisavljevic, B. & Kis, A. Nat. Mater. 12, 815–820 (2013).

    ADS  Article  Google Scholar 

  52. 52.

    Cheng, C. et al. Nanoscale 8, 17854–17860 (2016).

    Article  Google Scholar 

  53. 53.

    Rojas-Sánchez, J.-C. et al. Phys. Rev. Lett. 116, 096602 (2016).

    ADS  Article  Google Scholar 

  54. 54.

    Deorani, P. et al. Phys. Rev. B 90, 094403 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Fert, P. Noël and D.C. Vaz for useful discussions. This work received support from the ERC CoG ‘MINT’ (#615759) and the French ANR project ‘OISO’ (ANR-17-CE24-0026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bibes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varignon, J., Vila, L., Barthélémy, A. et al. A new spin for oxide interfaces. Nature Phys 14, 322–325 (2018). https://doi.org/10.1038/s41567-018-0112-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing