Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

A new spin for oxide interfaces

The variety of emergent phenomena occurring at oxide interfaces has made these systems the focus of intense study in recent years. We argue that spin–orbit effects in oxide interfaces provide a versatile handle to generate, control and convert spin currents, with a view towards low-power spintronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scattering time and Rashba coefficients for various two-dimensional systems.
Fig. 2: Generating a spin current in a SrTiO3 2DEG.
Fig. 3: Emergent quantum phenomena in SrTiO3-based 2DEGs.

References

  1. Hwang, H. Y. et al. Nat. Mater. 11, 103–113 (2012).

    Article  ADS  Google Scholar 

  2. Santander-Syro, A. F. et al. Nature 469, 189–193 (2011).

    Article  ADS  Google Scholar 

  3. Ohtomo, A. & Hwang, H. Y. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  4. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. Nat. Mater. 14, 871–882 (2015).

    Article  ADS  Google Scholar 

  5. Edelstein, V. M. M. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  6. Manipatruni, S., Nikonov, D. E., Ramesh, R., Li, H. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).

  7. Rojas-Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).

    Google Scholar 

  8. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  9. Ganichev, S. D. et al. Nature 417, 153–156 (2002).

    Article  ADS  Google Scholar 

  10. Santander-Syro, A. F. et al. Nat. Mater. 13, 1085–1090 (2014).

    Article  ADS  Google Scholar 

  11. Chen, Y. Z. et al. Nat. Commun. 4, 1371 (2013).

    Article  Google Scholar 

  12. Şahin, C., Vignale, G. & Flatté, M. E. Phys. Rev. B 89, 155402 (2014).

    Article  ADS  Google Scholar 

  13. Reyren, N. et al. Phys. Rev. Lett. 108, 186802 (2012).

    Article  ADS  Google Scholar 

  14. Inoue, H. et al. Phys. Rev. X 5, 041023 (2015).

    Google Scholar 

  15. Kamerbeek, A. M. et al. Phys. Rev. Lett. 115, 136601 (2015).

    Article  ADS  Google Scholar 

  16. Han, W. et al. Nat. Commun. 4, 2134 (2013).

    Google Scholar 

  17. Jin, M.-J. et al. Nano Lett. 17, 36–43 (2017).

    Article  ADS  Google Scholar 

  18. Lesne, E. et al. Nat. Mater. 15, 1261–1266 (2016).

    Article  ADS  Google Scholar 

  19. Chauleau, J.-Y. et al. Europhys. Lett. 116, 17006 (2016).

    Article  ADS  Google Scholar 

  20. Zhang, W. et al. Appl. Phys. Lett. 109, 262402 (2016).

    Article  ADS  Google Scholar 

  21. Song, Q. et al. Sci. Adv. 3, e1602312 (2017).

    Article  ADS  Google Scholar 

  22. Ohshima, R. et al. Nat. Mater. 16, 609–614 (2017).

    Article  ADS  Google Scholar 

  23. Caviglia, A. D. et al. Phys. Rev. Lett. 104, 126803 (2010).

    Article  ADS  Google Scholar 

  24. Hurand, S. et al. Sci. Rep. 5, 12751 (2015).

    Article  ADS  Google Scholar 

  25. Gopinadhan, K. et al. Adv. Mater. 3, 1500114 (2015).

    Google Scholar 

  26. Liang, H. et al. Phys. Rev. B 92, 075309 (2015).

    Article  ADS  Google Scholar 

  27. Shanavas, K. V., Popović, Z. S. & Satpathy, S. Phys. Rev. B 90, 165108 (2014).

    Article  ADS  Google Scholar 

  28. Zhong, Z. et al. Phys. Rev. B 87, 161102(R) (2013).

    Article  ADS  Google Scholar 

  29. Bucheli, D., Grilli, M., Peronaci, F., Seibold, G. & Caprara, S. Phys. Rev. B 89, 195448 (2014).

    Article  ADS  Google Scholar 

  30. Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. Nat. Commun. 3, 1129 (2012).

    Article  ADS  Google Scholar 

  31. King, P. D. C. et al. Nat. Commun. 5, 3414 (2014).

    Google Scholar 

  32. Narayanapillai, K. et al. Appl. Phys. Lett. 105, 162405 (2014).

    Article  ADS  Google Scholar 

  33. Wang, Y. et al. Nano Lett. 17, 7659–7664 (2017).

    Article  ADS  Google Scholar 

  34. Vivek, M., Goerbig, M. O. & Gabay, M. Phys. Rev. B 95, 165117 (2017).

    Article  ADS  Google Scholar 

  35. Kondou, K. et al. Nat. Phys. 12, 1027–1031 (2016).

    Article  Google Scholar 

  36. Rischau, C. W. et al. Nat. Phys. 13, 643–648 (2017).

    Article  Google Scholar 

  37. Tra, V. T. et al. Adv. Mater. 25, 3357–3364 (2013).

    Article  Google Scholar 

  38. da Silveira, L. G. D., Barone, P. & Picozzi, S. Phys. Rev. B 93, 245159 (2016).

    Article  ADS  Google Scholar 

  39. Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Adv. Mater. 25, 509–513 (2013).

    Article  Google Scholar 

  40. Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Nano Lett. 16, 1663–1668 (2016).

    Article  ADS  Google Scholar 

  41. Zhang, X., Abdalla, L. B., Liu, Q. & Zunger, A. Adv. Funct. Mater. 27, 1701266 (2017).

    Article  Google Scholar 

  42. Bowen, M. et al. Appl. Phys. Lett. 82, 233–235 (2003).

    Article  ADS  Google Scholar 

  43. Bibes, M. et al. Appl. Phys. Lett. 83, 2629–2631 (2003).

    Article  ADS  Google Scholar 

  44. Heron, J. T. et al. Nature 516, 370–373 (2014).

    Article  ADS  Google Scholar 

  45. Manipatruni, S., Nikonov, D. E. & Young, I. A. Nat. Phys. https://doi.org/10.1038/s41567-018-0101-4 (2018).

  46. Blank, D. H. A., Dekkers, M. & Rijnders, G. J. Phys. D. Appl. Phys. 47, 34006 (2014).

    Article  Google Scholar 

  47. Mohanta, N. & Taraphder, A. Europhys. Lett. 108, 60001 (2014).

    Article  ADS  Google Scholar 

  48. Studer, M., Salis, G., Ensslin, K., Driscoll, D. C. & Gossard, A. C. Phys. Rev. Lett. 103, 027201 (2009).

    Article  ADS  Google Scholar 

  49. Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Phys. Rev. Lett. 89, 046801 (2002).

    Article  ADS  Google Scholar 

  50. Schultz, M. et al. Semicond. Sci. Technol. 11, 1168–1172 (1996).

    Article  ADS  Google Scholar 

  51. Radisavljevic, B. & Kis, A. Nat. Mater. 12, 815–820 (2013).

    Article  ADS  Google Scholar 

  52. Cheng, C. et al. Nanoscale 8, 17854–17860 (2016).

    Article  Google Scholar 

  53. Rojas-Sánchez, J.-C. et al. Phys. Rev. Lett. 116, 096602 (2016).

    Article  ADS  Google Scholar 

  54. Deorani, P. et al. Phys. Rev. B 90, 094403 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Fert, P. Noël and D.C. Vaz for useful discussions. This work received support from the ERC CoG ‘MINT’ (#615759) and the French ANR project ‘OISO’ (ANR-17-CE24-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bibes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varignon, J., Vila, L., Barthélémy, A. et al. A new spin for oxide interfaces. Nature Phys 14, 322–325 (2018). https://doi.org/10.1038/s41567-018-0112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0112-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing