Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amplification of intense light fields by nearly free electrons

A Publisher Correction to this article was published on 18 June 2018

This article has been updated

Abstract

Light can be used to modify and control properties of media, as in the case of electromagnetically induced transparency or, more recently, for the generation of slow light or bright coherent extreme ultraviolet and X-ray radiation. Particularly unusual states of matter can be created by light fields with strengths comparable to the Coulomb field that binds valence electrons in atoms, leading to nearly free electrons oscillating in the laser field and yet still loosely bound to the core1,2. These are known as Kramers–Henneberger states3, a specific example of laser-dressed states2. Here, we demonstrate that these states arise not only in isolated atoms4,5, but also in rare gases, at and above atmospheric pressure, where they can act as a gain medium during laser filamentation. Using shaped laser pulses, gain in these states is achieved within just a few cycles of the guided field. The corresponding lasing emission is a signature of population inversion in these states and of their stability against ionization. Our work demonstrates that these unusual states of neutral atoms can be exploited to create a general ultrafast gain mechanism during laser filamentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kramers–Henneberger potential and simulated absorption spectra of an Ar atom dressed by a strong IR pulse.
Fig. 2: Forward emission spectrum from different pulse shapes filamenting in argon at 9 bar.
Fig. 3: A comparison between simulated and experimental emission spectra from a 10 fs rise, 10 fs plateau, 10 fs decay laser pulse shape.
Fig. 4: The forward emission spectra of trapezoid pulse shapes in krypton at 9 bar, with increasing pulse energy.

Similar content being viewed by others

Change history

  • 18 June 2018

    In the version of this Letter originally published, the units of the bottom three values in the Fig. 1d legend were incorrect; they should have been W cm–2. This has now been corrected.

References

  1. Eberly, J. H. & Kulander, K. C. Atomic stabilization by super-intense lasers. Science 262, 1229–1233 (1993).

    Article  ADS  Google Scholar 

  2. Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner, W. Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 1261–1264 (2009).

    Article  ADS  Google Scholar 

  3. Henneberger, W. C. Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 21, 838–841 (1968).

    Article  ADS  Google Scholar 

  4. Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U. & Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).

    Article  ADS  Google Scholar 

  5. Eichmann, U., Saenz, A., Eilzer, S., Nubbemeyer, T. & Sandner, W. Observing Rydberg atoms to survive intense laser fields. Phys. Rev. Lett. 110, 203002 (2013).

    Article  ADS  Google Scholar 

  6. Fedorov, M. V. & Movsesian, A. M. Field-induced effects of narrowing of photoelectron spectra and stabilisation of Rydberg atoms. J. Phys. B 21, L155–L158 (1988).

    Article  ADS  Google Scholar 

  7. Fedorov, M. V. & Ivanov, M. Y. Coherence and interference in a Rydberg atom in a strong laser field: excitation, ionization, and emission of light. J. Opt. Soc. Am. 7, 569–573 (1990).

    Article  ADS  Google Scholar 

  8. Su, Q., Eberly, J. H. & Javanainen, J. Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field. Phys. Rev. Lett. 64, 862–865 (1990).

    Article  ADS  Google Scholar 

  9. Pont, M. & Gavrila, M. Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization. Phys. Rev. Lett. 65, 2362–2365 (1990).

    Article  ADS  Google Scholar 

  10. Scrinzi, A., Elander, N. & Piraux, B. Stabilization of Rydberg atoms in superintense laser fields. Phys. Rev. A 48, R2527–R2530 (1993).

    Article  ADS  Google Scholar 

  11. Volkova, E. A., Popov, A. M. & Smirnova, O. V. Stabilization of atoms in a strong field and the Kramers–Henneberger approximation. Sov. Phys. JETP 79, 736–742 (1994).

    ADS  Google Scholar 

  12. Ivanov, M. Y., Tikhonova, O. V. & Fedorov, M. V. Semiclassical dynamics of strongly driven systems. Phys. Rev. A 58, R793–R796 (1998).

    Article  ADS  Google Scholar 

  13. Morales, F., Richter, M., Patchkovskii, S. & Smirnova, O. Imaging the Kramers-Henneberger atom. Proc. Natl Acad. Sci. USA 108, 16906–16911 (2011).

    Article  ADS  Google Scholar 

  14. Fedorov, M. V. et al. Interference stabilization revisited. IEEE J. Sel. Top. Quantum Electron. 18, 42–53 (2012).

    Article  ADS  Google Scholar 

  15. Li, R., Michlberg, H. & Mysyrowicz, A. Special issue on filamentation. J. Phys. B 48, Issue 9 (2015)

  16. Richter, M., Patchkovskii, S., Morales, F., Smirnova, O. & Ivanov, M. The role of the Kramers–Henneberger atom in the higher-order Kerr effect. New J. Phys. 15, 083012 (2013).

    Article  ADS  Google Scholar 

  17. Bredtmann, T., Chelkowski, S., Bandrauk, A. D. & Ivanov, M. XUV lasing during strong-field-assisted transient absorption in molecules. Phys. Rev. A 93, 021402 (2016).

    Article  ADS  Google Scholar 

  18. Bogatskaya, A. V., Volkova, E. A. & Popov, A. M. Amplification and lasing in a plasma channel formed in gases by an intense femtosecond laser pulse in the regime of interference stabilization. Laser Phys. 26, 015301 (2015).

    Article  ADS  Google Scholar 

  19. Dogariu, A., Michael, J. B., Scully, M. O. & Miles, R. B. High-gain backward lasing in air. Science 331, 442–445 (2011).

    Article  ADS  Google Scholar 

  20. Hemmer, P. R. et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam. Proc. Natl Acad. Sci. USA 108, 3130–3134 (2011).

    Article  ADS  Google Scholar 

  21. Yao, J. et al. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84, 051802(R) (2011).

    Article  ADS  Google Scholar 

  22. Liu, Y., Brelet, Y., Point, G., Houard, A. & Mysyrowicz, A. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791–22798 (2013).

    Article  ADS  Google Scholar 

  23. Point, G. et al. Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Opt. Lett. 39, 1725–1728 (2014).

    Article  ADS  Google Scholar 

  24. Malevich, P. N. et al. Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases. Opt. Express 20, 18784–18794 (2012).

    Article  ADS  Google Scholar 

  25. Xu, H., Lötstedt, E., Iwasaki, A. & Yamanouchi, K. Sub-10-fs population inversion in N2 + in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015).

    Article  ADS  Google Scholar 

  26. Liu, Y. et al. Recollision-induced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 115, 133203 (2015).

    Article  ADS  Google Scholar 

  27. Yao, J. et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 116, 143007 (2016).

    Article  ADS  Google Scholar 

  28. Luo, Q., Hosseini, A., Liu, W. & Chin, S. L. Lasing action in air driven by ultra-fast laser filamentation. Appl. Phys. B 76, 337–40 (2003).

    Article  ADS  Google Scholar 

  29. Dogariu, A. & Miles, R. B. Three-photon femtosecond pumped backwards lasing in argon. Opt. Express 24, A544–A552 (2016).

    Article  ADS  Google Scholar 

  30. Doussot, J., Karras, G., Billard, F., Béjot, P. & Faucher, O. Resonantly enhanced filamentation in gases. Optica 4, 764–769 (2017).

    Article  ADS  Google Scholar 

  31. Depresseux, A. et al. Demonstration of a circularly polarized plasma-based soft-X-ray laser. Phys. Rev. Lett. 115, 083901 (2015).

    Article  ADS  Google Scholar 

  32. Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    Article  ADS  Google Scholar 

  33. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  34. Hagemann, F., Gause, O., Woeste, L. & Siebert, T. Supercontinuum pulse shaping in the few-cycle regime. Opt. Express 21, 5536–5549 (2013).

    Article  ADS  Google Scholar 

  35. Wu, T. W., Tang, J., Hajj, B. & Cui, M. Phase resolved interferometric spectral modulation (PRISM) for ultrafast pulse measurement and compression. Opt. Express 19, 12961–12968 (2011).

    Article  ADS  Google Scholar 

  36. Xu, Z. J., Liu, W., Zhang, N., Wang, M. W. & Zhu, X. N. Effect of intensity clamping on laser ablation by intense femtosecond laser pulses. Opt. Express 16, 3604–3609 (2008).

    Article  ADS  Google Scholar 

  37. Kolesik, M., Moloney, J. V. & Mlejnek, M. Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89, 283902 (2002).

    Article  ADS  Google Scholar 

  38. Berti, N., Ettoumi, W., Hermelin, S., Kasparian, J. & Wolf, J. P. Non-linear synthesis of complex laser waveforms at remote distances. Phys. Rev. A 91, 063833 (2015).

    Article  ADS  Google Scholar 

  39. Patchkovskii, S. & Muller, H. G. Simple, accurate, and efficient implementation of 1-electron atomic time-dependent Schrödinger equation in spherical coordinates. Comput. Phys. Commun. 199, 153–169 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  40. Manolopoulos, D. E. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys. 117, 9552–9559 (2002).

    Article  ADS  Google Scholar 

  41. Muller, H. G. Numerical simulation of high-order above-threshold-ionization enhancement in argon. Phys. Rev. A 60, 1341–1350 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the valuable contributions of M. Moret, for advanced technical assistance with the experimental set-up, S. Courvoisier, for technical assistance with graphical formatting, and L. Woeste, for constructive advice. J.P, J.G. and S.H. acknowledge funding from SNF NCCR MUST grant. J.P and J.K acknowledge funding from ERC grant Filatmo. M.M. acknowledges funding from MHV fellowship grant number: PMPDP2-145444 and NCCR MUST Women's Postdoc Awards. M.I. acknowledges the support of the DFG QUTIF grant number IV 152/7-1.

Author information

Authors and Affiliations

Authors

Contributions

J-P.W. and M.I. conceived the experiment. M.I., F.M., M.R., T.B. and O.S. performed the calculations and developed the theoretical interpretation. N.B. performed filamentation propagation simulations. M.M., S.H., J.K. and J.G. designed the experimental apparatus. A.P. and A.L. designed and implemented the pulse-shaping process. M.M., A.P., A.L, J.G. and S.H. performed the experiment and pulse measurements. M.M., A.P. and J.K. analysed and processed the experimental data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Mary Matthews.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, supplementary figures, supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, M., Morales, F., Patas, A. et al. Amplification of intense light fields by nearly free electrons. Nature Phys 14, 695–700 (2018). https://doi.org/10.1038/s41567-018-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0105-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing