Perspective | Published:

Beyond CMOS computing with spin and polarization

Nature Physicsvolume 14pages338343 (2018) | Download Citation

Abstract

Spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore’s law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Auth, C., A. et al. in 2017 IEEE Int. Electron Devices Meeting 29–1. (IEEE, 2017).

  2. 2.

    Xu, M. & Arce, G. R. Computational Lithography Vol. 77. (Wiley, New York, NY, 2011).

  3. 3.

    Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. & Horowitz, M. Commun. ACM 55, 55–63 (2012).

  4. 4.

    Moore, G. E. ISSCC Dig. Tech. Pap. 20–23 (2003).

  5. 5.

    Dennard, R. H. et al. IEEE J. Solid-State Circuits 9, 256–268 (1974).

  6. 6.

    Holt, W. M. in 2016 IEEE International Solid-State Circuits Conf. 8–13 (IEEE, 2016).

  7. 7.

    Ghani, T. et al. in 2003 IEEE Int. Electron Devices Meeting 11–6 (IEEE, 2003).

  8. 8.

    Ferain, I., Colinge, C. A. & Colinge, J.-P. Nature 479, 310–316 (2011).

  9. 9.

    Nikonov, D. E. & Young, I. A. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

  10. 10.

    Chappert, C., Fert, A. & Nguyen Van Dau, F. Nat. Mater. 6, 813–823 (2007).

  11. 11.

    Allwood, D. A. et al. Science 309, 1688–1692 (2005).

  12. 12.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys 11, 453–461 (2015).

  13. 13.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).

  14. 14.

    Meindl, J. D., Chen, Q. & Davis, J. A. Science 293, 2044–2049 (2001).

  15. 15.

    Nyquist, H. Phys. Rev 32, 110–113 (1928).

  16. 16.

    Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, New York, NY, 1991).

  17. 17.

    Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Preprint at https://arxiv.org/abs/1610.00377 (2016).

  18. 18.

    von Neumann, J. Automata Studies 34, 43–98 (1956).

  19. 19.

    Merolla, P. A. et al. Science 345, 668–673 (2014).

  20. 20.

    Hopfield, J. J. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

  21. 21.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Nat. Nanotech 5, 266–270 (2010).

  22. 22.

    Spaldin, N. A. & Fiebig, M. Science 309, 391–392 (2005).

  23. 23.

    Khomskii, D. Physics 2, 20 (2009).

  24. 24.

    Birol, T. et al. Curr. Opin. Solid State Mater. Sci 16, 227–242 (2012).

  25. 25.

    Heron, J. T. et al. Nature 516, 370–373 (2014).

  26. 26.

    Chu, Y.-H. et al. Nat. Mater. 7, 478–482 (2008).

  27. 27.

    He, X. et al. Nat. Mater. 9, 579–585 (2010).

  28. 28.

    Maruyama, T. et al. Nat. Nanotech 4, 158–161 (2009).

  29. 29.

    Mayadas, A. F., Shatzkes, M. & Janak, J. F. Appl. Phys. Lett. 14, 345–347 (1969).

  30. 30.

    Iraei, R. M., Manipatruni, S., Nikonov, D., Young, I. & Naeemi, A. IEEE J. Explor. Solid-State Computat. Devices Circuits 3, 47–55 (2017).

  31. 31.

    Pan, C., Chang, S.-C. & Naeemi, A. in 2016 IEEE Int. Interconnect Technology Conf./Advanced Metallization Conf. (IITC/AMC) 56–58 (IEEE, 2016).

  32. 32.

    Manipatruni, S., Lipson, M. & Young, I. A. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).

  33. 33.

    Landauer, R. IBM J. Res. Dev 5, 183–191 (1961).

  34. 34.

    Mead, C. Proc. IEEE 78, 1629–1636 (1990).

  35. 35.

    Nikonov, D. E. et al. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 85–93 (2015).

  36. 36.

    Davies, M. et al. IEEE Micro 38, 82–99 (2018).

  37. 37.

    Jouppi, N. P. et al. Preprint at https://arxiv.org/abs/1704.04760 (2017).

  38. 38.

    Köster, U. et al. Preprint at https://arxiv.org/abs/1711.02213 (2017).

  39. 39.

    Strogatz, S. Sync: The Emerging Science of Spontaneous Order (Penguin, London, 2004).

  40. 40.

    Anderson, P. W. Science 177, 393–396 (1972).

  41. 41.

    Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Nature 542, 71–74 (2017).

  42. 42.

    Rowlands, G. E. et al. Appl. Phys. Lett. 98, 102509 (2011).

  43. 43.

    Chu, Y. H. et al. Appl. Phys. Lett. 92, 102909 (2008).

  44. 44.

    Nowak, J. J. et al. IEEE Magn. Lett 2, 3000204 (2011).

  45. 45.

    Jan, G. in 2016 IEEE Symp. on VLSI Technology 1–2 (IEEE, 2016).

  46. 46.

    Shiota, Y. et al. Appl. Phys. Lett. 111, 022408 (2017).

  47. 47.

    Mundy, J. A. et al. Nature 537, 523–527 (2016).

  48. 48.

    Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. NPG Asia Mater 2, 61–68 (2010).

  49. 49.

    Shiomi, Y. et al. Phys. Rev. Lett. 113, 196601 (2014).

  50. 50.

    Bakaul, S. R. et al. Nat. Commun. 7, 10547 (2016).

  51. 51.

    Song, Q. et al. Sci. Adv. 3, e1602312 (2017).

  52. 52.

    Cheng, C. et al. Preprint at https://arxiv.org/abs/1510.03451 (2015).

  53. 53.

    Jamali, M, et al. Preprint at https://arxiv.org/abs/1703.03822 (2017).

  54. 54.

    Omori, Y. et al. Appl. Phys. Lett. 104, 242415 (2014).

  55. 55.

    Sagasta, E. et al. Phys. Rev. B 94, 060412 (2016).

  56. 56.

    Noguchi, H, et al. in 2016 IEEE Int. Electron Devices Meeting 27–5 (IEEE, 2016).

  57. 57.

    Chen, L., Preston, K., Manipatruni, S. & Lipson, M. Opt. Express 17, 15248–15256 (2009).

  58. 58.

    Hamaya, K. et al. Phys. Rev. B 85, 100404 (2012).

  59. 59.

    Liu, S., Grinberg, I. & Rappe, A. M. Nature 534, 360–363 (2016).

  60. 60.

    Stengel, M. & Íñiguez, J. Phys. Rev. B 92, 235148 (2015).

  61. 61.

    Yang, Y. Sci. Adv. 3, e1603117 (2017).

  62. 62.

    Butler, W. H. et al. IEEE Trans. Magn. 48, 4684–4700 (2012).

  63. 63.

    Warren, W. L., Tuttle, B. A. & Dimos, D. Appl. Phys. Lett. 67, 1426–1428 (1995).

  64. 64.

    D’Souza, N., Fashami, M. S., Bandyopadhyay, S. & Atulasimha, J. Nano Lett. 16, 1069–1075 (2016).

  65. 65.

    Edelstein, V. M. Solid State Commun 73, 233–235 (1990).

  66. 66.

    Rojas Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).

  67. 67.

    Kirilyuk, A., Kimel, A. V. & Rasing, T. Rev. Mod. Phys. 82, 2731–2784 (2010).

  68. 68.

    Brewer, R. T. et al. J. Appl. Phys. 97, 034103 (2005).

  69. 69.

    Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. Preprint at https://arxiv.org/abs/1702.06119 (2017).

  70. 70.

    Kish, L. B. & Granqvist, C.-G. PLoS ONE 7, e46800 (2012).

Download references

Acknowledgements

We sincerely acknowledge the discussions with R. Ramamoorthy, N. Shanbhag, D. Schlom, S. Salahuddin, F. Rana, B. Hillebrands, J.-P. Wang and A. Patil.

Author information

Affiliations

  1. Components Research, Intel Corporation, Hillsboro, OR, USA

    • Sasikanth Manipatruni
    • , Dmitri E. Nikonov
    •  & Ian A. Young

Authors

  1. Search for Sasikanth Manipatruni in:

  2. Search for Dmitri E. Nikonov in:

  3. Search for Ian A. Young in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Sasikanth Manipatruni.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0101-4

Further reading