Abstract
Spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore’s law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Weighted spin torque nano-oscillator system for neuromorphic computing
Communications Engineering Open Access 20 September 2023
-
Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators
Nature Communications Open Access 24 August 2023
-
Transverse Domain Walls in Thin Ferromagnetic Strips
Archive for Rational Mechanics and Analysis Open Access 30 May 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Auth, C., A. et al. in 2017 IEEE Int. Electron Devices Meeting 29–1. (IEEE, 2017).
Xu, M. & Arce, G. R. Computational Lithography Vol. 77. (Wiley, New York, NY, 2011).
Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. & Horowitz, M. Commun. ACM 55, 55–63 (2012).
Moore, G. E. ISSCC Dig. Tech. Pap. 20–23 (2003).
Dennard, R. H. et al. IEEE J. Solid-State Circuits 9, 256–268 (1974).
Holt, W. M. in 2016 IEEE International Solid-State Circuits Conf. 8–13 (IEEE, 2016).
Ghani, T. et al. in 2003 IEEE Int. Electron Devices Meeting 11–6 (IEEE, 2003).
Ferain, I., Colinge, C. A. & Colinge, J.-P. Nature 479, 310–316 (2011).
Nikonov, D. E. & Young, I. A. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).
Chappert, C., Fert, A. & Nguyen Van Dau, F. Nat. Mater. 6, 813–823 (2007).
Allwood, D. A. et al. Science 309, 1688–1692 (2005).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys 11, 453–461 (2015).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).
Meindl, J. D., Chen, Q. & Davis, J. A. Science 293, 2044–2049 (2001).
Nyquist, H. Phys. Rev 32, 110–113 (1928).
Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, New York, NY, 1991).
Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Preprint at https://arxiv.org/abs/1610.00377 (2016).
von Neumann, J. Automata Studies 34, 43–98 (1956).
Merolla, P. A. et al. Science 345, 668–673 (2014).
Hopfield, J. J. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).
Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Nat. Nanotech 5, 266–270 (2010).
Spaldin, N. A. & Fiebig, M. Science 309, 391–392 (2005).
Khomskii, D. Physics 2, 20 (2009).
Birol, T. et al. Curr. Opin. Solid State Mater. Sci 16, 227–242 (2012).
Heron, J. T. et al. Nature 516, 370–373 (2014).
Chu, Y.-H. et al. Nat. Mater. 7, 478–482 (2008).
He, X. et al. Nat. Mater. 9, 579–585 (2010).
Maruyama, T. et al. Nat. Nanotech 4, 158–161 (2009).
Mayadas, A. F., Shatzkes, M. & Janak, J. F. Appl. Phys. Lett. 14, 345–347 (1969).
Iraei, R. M., Manipatruni, S., Nikonov, D., Young, I. & Naeemi, A. IEEE J. Explor. Solid-State Computat. Devices Circuits 3, 47–55 (2017).
Pan, C., Chang, S.-C. & Naeemi, A. in 2016 IEEE Int. Interconnect Technology Conf./Advanced Metallization Conf. (IITC/AMC) 56–58 (IEEE, 2016).
Manipatruni, S., Lipson, M. & Young, I. A. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).
Landauer, R. IBM J. Res. Dev 5, 183–191 (1961).
Mead, C. Proc. IEEE 78, 1629–1636 (1990).
Nikonov, D. E. et al. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 85–93 (2015).
Davies, M. et al. IEEE Micro 38, 82–99 (2018).
Jouppi, N. P. et al. Preprint at https://arxiv.org/abs/1704.04760 (2017).
Köster, U. et al. Preprint at https://arxiv.org/abs/1711.02213 (2017).
Strogatz, S. Sync: The Emerging Science of Spontaneous Order (Penguin, London, 2004).
Anderson, P. W. Science 177, 393–396 (1972).
Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Nature 542, 71–74 (2017).
Rowlands, G. E. et al. Appl. Phys. Lett. 98, 102509 (2011).
Chu, Y. H. et al. Appl. Phys. Lett. 92, 102909 (2008).
Nowak, J. J. et al. IEEE Magn. Lett 2, 3000204 (2011).
Jan, G. in 2016 IEEE Symp. on VLSI Technology 1–2 (IEEE, 2016).
Shiota, Y. et al. Appl. Phys. Lett. 111, 022408 (2017).
Mundy, J. A. et al. Nature 537, 523–527 (2016).
Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. NPG Asia Mater 2, 61–68 (2010).
Shiomi, Y. et al. Phys. Rev. Lett. 113, 196601 (2014).
Bakaul, S. R. et al. Nat. Commun. 7, 10547 (2016).
Song, Q. et al. Sci. Adv. 3, e1602312 (2017).
Cheng, C. et al. Preprint at https://arxiv.org/abs/1510.03451 (2015).
Jamali, M, et al. Preprint at https://arxiv.org/abs/1703.03822 (2017).
Omori, Y. et al. Appl. Phys. Lett. 104, 242415 (2014).
Sagasta, E. et al. Phys. Rev. B 94, 060412 (2016).
Noguchi, H, et al. in 2016 IEEE Int. Electron Devices Meeting 27–5 (IEEE, 2016).
Chen, L., Preston, K., Manipatruni, S. & Lipson, M. Opt. Express 17, 15248–15256 (2009).
Hamaya, K. et al. Phys. Rev. B 85, 100404 (2012).
Liu, S., Grinberg, I. & Rappe, A. M. Nature 534, 360–363 (2016).
Stengel, M. & Íñiguez, J. Phys. Rev. B 92, 235148 (2015).
Yang, Y. Sci. Adv. 3, e1603117 (2017).
Butler, W. H. et al. IEEE Trans. Magn. 48, 4684–4700 (2012).
Warren, W. L., Tuttle, B. A. & Dimos, D. Appl. Phys. Lett. 67, 1426–1428 (1995).
D’Souza, N., Fashami, M. S., Bandyopadhyay, S. & Atulasimha, J. Nano Lett. 16, 1069–1075 (2016).
Edelstein, V. M. Solid State Commun 73, 233–235 (1990).
Rojas Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Rev. Mod. Phys. 82, 2731–2784 (2010).
Brewer, R. T. et al. J. Appl. Phys. 97, 034103 (2005).
Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. Preprint at https://arxiv.org/abs/1702.06119 (2017).
Kish, L. B. & Granqvist, C.-G. PLoS ONE 7, e46800 (2012).
Acknowledgements
We sincerely acknowledge the discussions with R. Ramamoorthy, N. Shanbhag, D. Schlom, S. Salahuddin, F. Rana, B. Hillebrands, J.-P. Wang and A. Patil.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Manipatruni, S., Nikonov, D.E. & Young, I.A. Beyond CMOS computing with spin and polarization. Nature Phys 14, 338–343 (2018). https://doi.org/10.1038/s41567-018-0101-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0101-4
This article is cited by
-
Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators
Nature Communications (2023)
-
Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory
Nature Communications (2023)
-
Weighted spin torque nano-oscillator system for neuromorphic computing
Communications Engineering (2023)
-
Transverse Domain Walls in Thin Ferromagnetic Strips
Archive for Rational Mechanics and Analysis (2023)
-
Ferroelectric Hf0.5Zr0.5O2-gated synaptic transistors with large conductance dynamic range and multilevel states
Science China Materials (2023)