Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge quantum interference device

Abstract

The demonstration of coherent quantum phase slips (CQPS) in disordered superconductors has opened up a new route towards exploring the fundamental charge–phase duality in superconductors, with the promise of devices with new functionalities and a robust quantum current standard based on CQPS. Here we demonstrate a device that integrates several CQPS junctions: the charge quantum interference device. The charge quantum interference device becomes the dual of the well-known superconducting quantum interference device, and is a manifestation of the Aharonov–Casher effect in a continuous superconducting system devoid of dielectric barriers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Duality and sample design.
Fig. 2: Energy level spectroscopy of the CQUID.
Fig. 3: Fit to theory and parity state population.

References

  1. Arutyunov, K. Y., Golubev, D. S. & Zaikin, A. D. Superconductivity in one dimension. Phys. Rep. 464, 1–70 (2008).

    ADS  Google Scholar 

  2. McCumber, D. E. & Halperin, B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054–1070 (1970).

    ADS  Google Scholar 

  3. Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    ADS  Google Scholar 

  4. Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).

    Google Scholar 

  5. Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).

    ADS  Google Scholar 

  6. Mooij, J. E. & Harmans, C. J. P. M. Phase-slip flux qubits. New. J. Phys. 7, 219 (2005).

    ADS  MathSciNet  Google Scholar 

  7. Hriscu, A. M. & Nazarov, Y. V. Coulomb blockade due to quantum phase slips illustrated with devices. Phys. Rev. B 83, 174511 (2011).

    ADS  Google Scholar 

  8. Jaklevic, R. C., Lambe, J., Silver, A. H. & Mercereau, J. E. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

    ADS  Google Scholar 

  9. Shapiro, S. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).

    ADS  Google Scholar 

  10. Kohlmann, J., Behr, R. & Funck, T. Josephson voltage standards. Meas. Sci. Tech. 14, 1216–1228 (2003).

    ADS  Google Scholar 

  11. Gallop, J. C. SQUIDs, the Josephson Effects and Superconducting Electronics (IOP Publishing Ltd., Bristol, 1990).

    Google Scholar 

  12. Ergül, A. et al. Localising quantum phase slips in one-dimensional Josephson junction chains. New. J. Phys. 15, 095014 (2013).

    ADS  Google Scholar 

  13. Webster, C. H. et al. NbSi nanowire quantum phase slip circuits: dc supercurrent blockade, microwave measurements, and thermal analysis. Phys. Rev. B 87, 144510 (2013).

    ADS  Google Scholar 

  14. Peltonen, J. T. et al. Coherent flux tunneling through NbN nanowires. Phys. Rev. B 88, 220506 (2013).

    ADS  Google Scholar 

  15. Peltonen, J. T. et al. Coherent dynamics and decoherence in a superconducting weak link. Phys. Rev. B 94, 180508 (2016).

    ADS  Google Scholar 

  16. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    ADS  MathSciNet  MATH  Google Scholar 

  17. Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).

    ADS  MathSciNet  Google Scholar 

  18. Elion, W. J., Wachters, J. J., Sohn, L. L. & Mooij, J. E. Observation of the Aharonov–Casher effect in vortices in Josephson-junction arrays. Phys. Rev. Lett. 71, 2311–2314 (1993).

    ADS  Google Scholar 

  19. Cimmino, A. et al. Observation of the topological Aharonov–Casher phase shift by neutron interferometry. Phys. Rev. Lett. 63, 380–383 (1989).

    ADS  Google Scholar 

  20. Sangster, K., Hinds, E. A., Barnett, S. M. & Riis, E. Measurement of the Aharonov–Casher phase in an atomic system. Phys. Rev. Lett. 71, 3641–3644 (1993).

    ADS  Google Scholar 

  21. König, M. et al. Direct observation of the Aharonov–Casher phase. Phys. Rev. Lett. 96, 076804 (2006).

    ADS  Google Scholar 

  22. Pop, I. M. et al. Experimental demonstration of Aharanov–Casher interference in a Josephson junction circuit. Phys. Rev. B 85, 094503 (2012).

    ADS  Google Scholar 

  23. Bell, M. T., Zhang, W., Ioffe, L. B. & Gershenson, M. E. Spectroscopic evidence of the Aharonov–Casher effect in a Cooper pair box. Phys. Rev. Lett. 116, 107002 (2016).

    ADS  Google Scholar 

  24. Born, D. et al. Reading out the state inductively and microwave spectroscopy of an interferometer-type charge qubit. Phys. Rev. B 70, 180501 (2004).

    ADS  Google Scholar 

  25. Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    ADS  Google Scholar 

  26. Manucharyan, V. E. et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys. Rev. B 85, 024521 (2012).

    ADS  Google Scholar 

  27. Masluk, N. A., Pop, I. M., Kamal, A., Minev, Z. K. & Devoret, M. H. Microwave characterisation of Josephson junction arrays: Implementing a low loss superinductance. Phys. Rev. Lett. 109, 137002 (2012).

    ADS  Google Scholar 

  28. Kerman, A. J. Fluxcharge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors. New. J. Phys. 15, 105017 (2013).

    ADS  Google Scholar 

  29. Guichard, W. & Hekking, F. W. J. Phase-charge duality in Josephson junction circuits: Role of inertia and effect of microwave irradiation. Phys. Rev. B 81, 064508 (2010).

    ADS  Google Scholar 

  30. Friedman, J. R. & Averin, D. V. Aharonov–Casher-effect suppression of macroscopic tunneling of magnetic flux. Phys. Rev. Lett. 88, 050403 (2002).

    ADS  Google Scholar 

  31. Weißl, T. et al. Bloch band dynamics of a Josephson junction in an inductive environment. Phys. Rev. B 91, 014507 (2015).

    ADS  Google Scholar 

  32. Cedergren, K. et al. Insulating Josephson junction chains as pinned Luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).

    ADS  Google Scholar 

  33. Linzen, S. et al. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition. Supercond. Sci. Technol. 30, 035010 (2017).

    ADS  Google Scholar 

  34. Ziegler, M. et al. Superconducting niobium nitride thin films deposited by metal organic plasma-enhanced atomic layer deposition. Supercond. Sci. Technol. 26, 025008 (2013).

    ADS  Google Scholar 

  35. Ziegler, M. et al. Effects of plasma parameter on morphological and electrical properties of superconducting NbN fabricated by MO-PEALD. IEEE Trans. Appl. Supercond. 27, 7501307 (2017).

    Google Scholar 

  36. Hongisto, T. T. & Zorin, A. B. Single-charge transistor based on the charge–phase duality of a superconducting nanowire. Phys. Rev. Lett. 108, 097001 (2012).

    ADS  Google Scholar 

  37. Lehtinen, J. S., Zakharov, K. & Arutyunov, K. Y. Coulomb blockade and Bloch oscillations in superconducting Ti nanowires. Phys. Rev. Lett. 109, 187001 (2012).

    ADS  Google Scholar 

  38. Kafanov, S. & Chtchelkatchev, N. M. Single flux transistor: The controllable interplay of coherent quantum phase slip and flux quantization. J. Appl. Phys. 114, 073907 (2013).

    ADS  Google Scholar 

  39. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS  Google Scholar 

  40. Hu, Z., Tie-Fu, L., Jian-She, L. & Wai, C. Charge-related SQUID and tunable phase-slip flux qubit. Chinese Phys. Lett. 31, 030303 (2014).

    Google Scholar 

  41. Matveev, K. A., Larkin, A. I. & Glazman, L. I. Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002).

    ADS  Google Scholar 

  42. Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).

    Google Scholar 

  43. Eiles, T. M., Martinis, J. M. & Devoret, M. H. Even–odd asymmetry of a superconductor revealed by the Coulomb blockade of Andreev reflection. Phys. Rev. Lett. 70, 1862–1865 (1993).

    ADS  Google Scholar 

  44. Hekking, F. W. J., Glazman, L. I., Matveev, K. A. & Shekhter, R. I. Coulomb blockade of two-electron tunneling. Phys. Rev. Lett. 70, 4138–4141 (1993).

    ADS  Google Scholar 

  45. Sun, L. et al. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit. Phys. Rev. Lett. 108, 230509 (2012).

    ADS  Google Scholar 

  46. Vanjevic, M. & Nazarov, Y. V. Quantum phase slips in superconducting wires with weak homogeneities. Phys. Rev. Lett. 108, 187002 (2012).

    ADS  Google Scholar 

  47. Semenov, A. D., Goltsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Phys. C 351, 349–356 (2001).

    ADS  Google Scholar 

  48. Vora, H., Kautz, R. L., Nam, S. W. & Aumentado, J. Modeling Bloch oscillations in nanoscale Josephson junctions. Phys. Rev. B 96, 054505 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK government’s Department for Business, Energy and Industrial Strategy. We thank Y. Nazarov and A. Semenov for fruitful discussions. S.T.S. thanks S. Diewald and L. Radtke for their technical support during fabrication and acknowledges support from the Heinrich Böll Foundation and the KHYS. This work was partially supported by the Increase Competitiveness Program of the NUST MISiS (grants no. K2-2015-002 and 2-2016-051).

Author information

Authors and Affiliations

Authors

Contributions

O.V.A., S.E.d.G. and A.Y.T. conceived the experiment. S.E.d.G. designed the samples, performed the measurements with assistance from S.T.S., T.H.-D., R.S., V.A. and O.V.A., and analysed the data. S.L., M.Z., U.H., H.G.M. and E.I. developed the thin-film technology. S.T.S. fabricated the samples with assistance from H.R. and R.S. S.E.d.G. wrote the manuscript with input from O.V.A., S.T.S. and all other authors. All authors discussed the results.

Corresponding author

Correspondence to S. E. de Graaf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Graaf, S.E., Skacel, S.T., Hönigl-Decrinis, T. et al. Charge quantum interference device. Nature Phys 14, 590–594 (2018). https://doi.org/10.1038/s41567-018-0097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0097-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing