Abstract
The demonstration of coherent quantum phase slips (CQPS) in disordered superconductors has opened up a new route towards exploring the fundamental charge–phase duality in superconductors, with the promise of devices with new functionalities and a robust quantum current standard based on CQPS. Here we demonstrate a device that integrates several CQPS junctions: the charge quantum interference device. The charge quantum interference device becomes the dual of the well-known superconducting quantum interference device, and is a manifestation of the Aharonov–Casher effect in a continuous superconducting system devoid of dielectric barriers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quasiperiodic circuit quantum electrodynamics
npj Quantum Information Open Access 14 November 2023
-
Superconducting insulators and localization of Cooper pairs
Communications Physics Open Access 24 June 2021
-
Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7–x nanowires
Nature Communications Open Access 07 February 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Arutyunov, K. Y., Golubev, D. S. & Zaikin, A. D. Superconductivity in one dimension. Phys. Rep. 464, 1–70 (2008).
McCumber, D. E. & Halperin, B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054–1070 (1970).
Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).
Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).
Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).
Mooij, J. E. & Harmans, C. J. P. M. Phase-slip flux qubits. New. J. Phys. 7, 219 (2005).
Hriscu, A. M. & Nazarov, Y. V. Coulomb blockade due to quantum phase slips illustrated with devices. Phys. Rev. B 83, 174511 (2011).
Jaklevic, R. C., Lambe, J., Silver, A. H. & Mercereau, J. E. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).
Shapiro, S. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).
Kohlmann, J., Behr, R. & Funck, T. Josephson voltage standards. Meas. Sci. Tech. 14, 1216–1228 (2003).
Gallop, J. C. SQUIDs, the Josephson Effects and Superconducting Electronics (IOP Publishing Ltd., Bristol, 1990).
Ergül, A. et al. Localising quantum phase slips in one-dimensional Josephson junction chains. New. J. Phys. 15, 095014 (2013).
Webster, C. H. et al. NbSi nanowire quantum phase slip circuits: dc supercurrent blockade, microwave measurements, and thermal analysis. Phys. Rev. B 87, 144510 (2013).
Peltonen, J. T. et al. Coherent flux tunneling through NbN nanowires. Phys. Rev. B 88, 220506 (2013).
Peltonen, J. T. et al. Coherent dynamics and decoherence in a superconducting weak link. Phys. Rev. B 94, 180508 (2016).
Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).
Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).
Elion, W. J., Wachters, J. J., Sohn, L. L. & Mooij, J. E. Observation of the Aharonov–Casher effect in vortices in Josephson-junction arrays. Phys. Rev. Lett. 71, 2311–2314 (1993).
Cimmino, A. et al. Observation of the topological Aharonov–Casher phase shift by neutron interferometry. Phys. Rev. Lett. 63, 380–383 (1989).
Sangster, K., Hinds, E. A., Barnett, S. M. & Riis, E. Measurement of the Aharonov–Casher phase in an atomic system. Phys. Rev. Lett. 71, 3641–3644 (1993).
König, M. et al. Direct observation of the Aharonov–Casher phase. Phys. Rev. Lett. 96, 076804 (2006).
Pop, I. M. et al. Experimental demonstration of Aharanov–Casher interference in a Josephson junction circuit. Phys. Rev. B 85, 094503 (2012).
Bell, M. T., Zhang, W., Ioffe, L. B. & Gershenson, M. E. Spectroscopic evidence of the Aharonov–Casher effect in a Cooper pair box. Phys. Rev. Lett. 116, 107002 (2016).
Born, D. et al. Reading out the state inductively and microwave spectroscopy of an interferometer-type charge qubit. Phys. Rev. B 70, 180501 (2004).
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).
Manucharyan, V. E. et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys. Rev. B 85, 024521 (2012).
Masluk, N. A., Pop, I. M., Kamal, A., Minev, Z. K. & Devoret, M. H. Microwave characterisation of Josephson junction arrays: Implementing a low loss superinductance. Phys. Rev. Lett. 109, 137002 (2012).
Kerman, A. J. Fluxcharge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors. New. J. Phys. 15, 105017 (2013).
Guichard, W. & Hekking, F. W. J. Phase-charge duality in Josephson junction circuits: Role of inertia and effect of microwave irradiation. Phys. Rev. B 81, 064508 (2010).
Friedman, J. R. & Averin, D. V. Aharonov–Casher-effect suppression of macroscopic tunneling of magnetic flux. Phys. Rev. Lett. 88, 050403 (2002).
Weißl, T. et al. Bloch band dynamics of a Josephson junction in an inductive environment. Phys. Rev. B 91, 014507 (2015).
Cedergren, K. et al. Insulating Josephson junction chains as pinned Luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).
Linzen, S. et al. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition. Supercond. Sci. Technol. 30, 035010 (2017).
Ziegler, M. et al. Superconducting niobium nitride thin films deposited by metal organic plasma-enhanced atomic layer deposition. Supercond. Sci. Technol. 26, 025008 (2013).
Ziegler, M. et al. Effects of plasma parameter on morphological and electrical properties of superconducting NbN fabricated by MO-PEALD. IEEE Trans. Appl. Supercond. 27, 7501307 (2017).
Hongisto, T. T. & Zorin, A. B. Single-charge transistor based on the charge–phase duality of a superconducting nanowire. Phys. Rev. Lett. 108, 097001 (2012).
Lehtinen, J. S., Zakharov, K. & Arutyunov, K. Y. Coulomb blockade and Bloch oscillations in superconducting Ti nanowires. Phys. Rev. Lett. 109, 187001 (2012).
Kafanov, S. & Chtchelkatchev, N. M. Single flux transistor: The controllable interplay of coherent quantum phase slip and flux quantization. J. Appl. Phys. 114, 073907 (2013).
Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).
Hu, Z., Tie-Fu, L., Jian-She, L. & Wai, C. Charge-related SQUID and tunable phase-slip flux qubit. Chinese Phys. Lett. 31, 030303 (2014).
Matveev, K. A., Larkin, A. I. & Glazman, L. I. Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002).
Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).
Eiles, T. M., Martinis, J. M. & Devoret, M. H. Even–odd asymmetry of a superconductor revealed by the Coulomb blockade of Andreev reflection. Phys. Rev. Lett. 70, 1862–1865 (1993).
Hekking, F. W. J., Glazman, L. I., Matveev, K. A. & Shekhter, R. I. Coulomb blockade of two-electron tunneling. Phys. Rev. Lett. 70, 4138–4141 (1993).
Sun, L. et al. Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit. Phys. Rev. Lett. 108, 230509 (2012).
Vanjevic, M. & Nazarov, Y. V. Quantum phase slips in superconducting wires with weak homogeneities. Phys. Rev. Lett. 108, 187002 (2012).
Semenov, A. D., Goltsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Phys. C 351, 349–356 (2001).
Vora, H., Kautz, R. L., Nam, S. W. & Aumentado, J. Modeling Bloch oscillations in nanoscale Josephson junctions. Phys. Rev. B 96, 054505 (2017).
Acknowledgements
This work was supported by the UK government’s Department for Business, Energy and Industrial Strategy. We thank Y. Nazarov and A. Semenov for fruitful discussions. S.T.S. thanks S. Diewald and L. Radtke for their technical support during fabrication and acknowledges support from the Heinrich Böll Foundation and the KHYS. This work was partially supported by the Increase Competitiveness Program of the NUST MISiS (grants no. K2-2015-002 and 2-2016-051).
Author information
Authors and Affiliations
Contributions
O.V.A., S.E.d.G. and A.Y.T. conceived the experiment. S.E.d.G. designed the samples, performed the measurements with assistance from S.T.S., T.H.-D., R.S., V.A. and O.V.A., and analysed the data. S.L., M.Z., U.H., H.G.M. and E.I. developed the thin-film technology. S.T.S. fabricated the samples with assistance from H.R. and R.S. S.E.d.G. wrote the manuscript with input from O.V.A., S.T.S. and all other authors. All authors discussed the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
de Graaf, S.E., Skacel, S.T., Hönigl-Decrinis, T. et al. Charge quantum interference device. Nature Phys 14, 590–594 (2018). https://doi.org/10.1038/s41567-018-0097-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0097-9
This article is cited by
-
Quasiperiodic circuit quantum electrodynamics
npj Quantum Information (2023)
-
Quantized current steps due to the a.c. coherent quantum phase-slip effect
Nature (2022)
-
The expanding role of National Metrology Institutes in the quantum era
Nature Physics (2022)
-
Superconducting insulators and localization of Cooper pairs
Communications Physics (2021)
-
Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7–x nanowires
Nature Communications (2020)