Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime

Abstract

Sympathetic cooling of trapped ions has been established as a powerful technique for the manipulation of non-laser-coolable ions1,2,3,4. For molecular ions, it promises vastly enhanced spectroscopic resolution and accuracy. However, this potential remains untapped so far, with the best resolution achieved being not better than 5 × 10−8 fractionally, due to residual Doppler broadening being present in ion clusters even at the lowest achievable translational temperatures5. Here we introduce a general and accessible approach that enables Doppler-free rotational spectroscopy. It makes use of the strong radial spatial confinement of molecular ions when trapped and crystallized in a linear quadrupole trap, providing the Lamb–Dicke regime for rotational transitions. We achieve a linewidth of 1 × 10−9 fractionally and 1.3 kHz absolute, an improvement of 50-fold over the previous highest resolution in rotational spectroscopy. As an application, we demonstrate the most precise test of ab initio molecular theory and the most accurate (1.3 × 10−9) determination of the proton mass using molecular spectroscopy. The results represent the long overdue extension of Doppler-free microwave spectroscopy of laser-cooled atomic ion clusters6 to higher spectroscopy frequencies and to molecules. This approach enables a wide range of high-accuracy measurements on molecules, both on rotational and, as we project, vibrational transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of the Lamb–Dicke rotational spectroscopy of sympathetically cooled molecular ions.
Fig. 2: Characteristics and consequences of the motion of molecular ions in laser-cooled Be+/HD+ Coulomb clusters at different temperatures.
Fig. 3: Simplified diagram of relevant energy levels of HD+ in the ground vibrational level ν = 0 of the \({}^{2}{{\rm{\Sigma }}}_{g}^{+}\) electronic state.
Fig. 4: Spectroscopy of one hyperfine component of the fundamental rotational transition of HD+.

Similar content being viewed by others

References

  1. Raizen, M., Gilligan, J., Bergquist, J., Itano, W. & Wineland, D. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493 –6501 (1992).

    ADS  Google Scholar 

  2. Waki, I., Kassner, S., Birkl, G. & Walther, H. Observation of ordered structures of laser-cooled ions in a quadrupole storage ring. Phys. Rev. Lett. 68, 2007–2010 (1992).

    ADS  Google Scholar 

  3. Bowe, P. et al. Sympathetic crystallization of trapped ions. Phys. Rev. Lett. 82, 2071–2074 (1999).

    ADS  Google Scholar 

  4. Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003).

    ADS  Google Scholar 

  5. Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 108, 183003 (2012).

    ADS  Google Scholar 

  6. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092 (1998).

    ADS  Google Scholar 

  7. Townes, C. & Schawlow, A. Microwave Spectroscopy (Dover, New York, NY, 1975).

  8. Jusko, P., Asvany, O., Wallerstein, A.-C., Brünken, S. & Schlemmer, S. Two-photon rotational action spectroscopy of cold OH at 1 ppb accuracy. Phys. Rev. Lett. 112, 253005 (2014).

    ADS  Google Scholar 

  9. Schiller, S. & Korobov, V. Test of time-dependence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A. 71, 032505 (2005).

    ADS  Google Scholar 

  10. Shelkovnikov, A., Butcher, R. J., Chardonnet, C. & Amy-Klein, A. Stability of the Proton-to-Electron Mass Ratio. Phys. Rev. Lett. 100, 150810 (2008).

    Google Scholar 

  11. Uzan, J.-P. Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011).

    ADS  MATH  Google Scholar 

  12. Godun, R. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014).

    ADS  Google Scholar 

  13. Huntemann, N. et al. Improved limit on a temporal variation of m p/m e from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014).

    ADS  Google Scholar 

  14. Roth, B. et al. in Precision Physics of Simple Atoms and Molecules. Lecture Notes in Physics Vol. 745 (ed. Karshenboim S. G.) 205–232 (Springer, Berlin, Heidelberg, 2008).

  15. Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007).

    ADS  Google Scholar 

  16. Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Comm. 7, 10385 (2016).

    ADS  Google Scholar 

  17. Winton, R. S. & Gordy, W. High-precision millimeter-wave spectroscopy with Lamb dip. Phys. Lett. A. 32, 219–220 (1970).

    ADS  Google Scholar 

  18. Cazzoli, G. & Dore, L. Observation of crossing resonances in the hyperfine structure of the J = 1 ← 0 transition of DC15N. J. Mol. Spectrosc. 143, 231–236 (1990).

    ADS  Google Scholar 

  19. Winnewisser, G., Belov, S. P., Klaus, T. & Schieder, R. Sub-Doppler measurements on the rotational transitions of carbon monoxide. J. Mol. Spectrosc. 184, 468–472 (1997).

    ADS  Google Scholar 

  20. Cazzoli, G. & Puzzarini, C. Sub-Doppler resolution in the THz frequency domain: 1 kHz accuracy at 1 THz by exploiting the Lamb-dip technique. J. Phys. Chem. A 117, 13759–13766 (2013).

    Google Scholar 

  21. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    ADS  Google Scholar 

  22. Germann, M., Tong, X. & Willitsch, S. Observation of dipole-forbidden transitions in sympathetically cooled, state-selected, homonuclear diatomic molecular ions. Nat. Phys. 10, 820–824 (2014).

    Google Scholar 

  23. Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    ADS  Google Scholar 

  24. Chou, C. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

    ADS  Google Scholar 

  25. Bakalov, D., Korobov, V. & Schiller, S. Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy. J. Phys. B 44, 025003 (2011); corrigendum 45, 049501 (2012).

  26. Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016).

    ADS  Google Scholar 

  27. Korobov, V. I., Hilico, L. & Karr, J. P. Theoretical transition frequencies beyond 0.1 ppb accuracy in H2 +, HD+, and antiprotonic helium. Phys. Rev. A 89, 032511 (2014).

    ADS  Google Scholar 

  28. Korobov, V. I., Hilico, L. & Karr, J.-P. 7-order corrections in the hydrogen molecular ions and antiprotonic helium. Phys. Rev. Lett. 112, 103003 (2014).

    ADS  Google Scholar 

  29. Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-P. Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016).

    ADS  Google Scholar 

  30. Korobov, V. I., Hilico, L. & Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017).

    ADS  Google Scholar 

  31. Hansen, A. K. et al. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas. Nature 508, 76–79 (2014).

    ADS  Google Scholar 

  32. Schiller, S., Kortunov, I., Hernández Vera, M., Gianturco, F. & da Silva, H. Quantum state preparation of homonuclear molecular ions enabled via a cold buffer gas: An ab initio study for the H2 + and the D2 + case. Phys. Rev. A 95, 043411 (2017).

    ADS  Google Scholar 

  33. Bakalov, D., Korobov, V. I. & Schiller, S. High-precision calculation of the hyperfine structure of the HD+ ion. Phys. Rev. Lett. 97, 243001 (2006).

    ADS  Google Scholar 

  34. Shen, J., Borodin, A. & Schiller, S. A simple method for characterization of the magnetic field in an ion trap using Be+ ions. Eur. Phys. J. D. 68, 359 (2014).

    ADS  Google Scholar 

  35. Hornekær, L., Kjærgaard, N., Thommesen, A. M. & Drewsen, M. Structural properties of two-component Coulomb crystals in linear Paul traps. Phys. Rev. Lett. 86, 1994 (2001).

    ADS  Google Scholar 

  36. Zhang, C. B., Offenberg, D., Roth, B., Wilson, M. A. & Schiller, S. Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap. Phys. Rev. A 76, 012719 (2007).

    ADS  Google Scholar 

  37. Cramér, H. Random Variables and Probability Distributions (Cambridge Univ. Press, Cambridge, 1970).

  38. Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    ADS  Google Scholar 

  39. Blythe, P., Roth, B., Fröhlich, U., Wenz, H. & Schiller, S. Production of ultracold trapped molecular hydrogen ions. Phys. Rev. Lett. 95, 183002 (2005).

    ADS  Google Scholar 

  40. Schneider, T., Roth, B., Duncker, H., Ernsting, I. & Schiller, S. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6, 275–278 (2010).

    Google Scholar 

  41. Shen, J., Borodin, A., Hansen, M. & Schiller, S. Observation of a rotational transition of trapped and sympathetically cooled molecular ions. Phys. Rev. A 85, 032519 (2012).

    ADS  Google Scholar 

  42. Schiller, S., Roth, B., Lewen, F., Ricken, O. & Wiedner, M. Ultra-narrow-linewidth continuous-wave THz sources based on multiplier chains. Appl. Phys. B 95, 55–61 (2009).

    ADS  Google Scholar 

  43. Wiens, E., Nevsky, A. Y. & Schiller, S. Resonator with ultrahigh length stability as a probe for equivalence-principle-violating physics. Phys. Rev. Lett. 117, 271102 (2016).

    Google Scholar 

  44. Wiens, E. et al. A silicon single-crystal cryogenic optical resonator. Opt. Lett. 39, 3242–3245 (2014).

    ADS  Google Scholar 

  45. Nevsky, A. Y. et al. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies. Opt. Lett. 38, 4903–4906 (2013).

    ADS  Google Scholar 

  46. Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014).

    ADS  Google Scholar 

  47. Schiller, S., Bakalov, D., Bekbaev, A. K. & Korobov, V. I. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions. Phys. Rev. A 89, 052521 (2014).

    ADS  Google Scholar 

  48. Constantin, F. L. THz/infrared double resonance two-photon spectroscopy of HD+ for determination of fundamental constants. Atoms 5, 38 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Deutsche Forschungsgemeinschaft project Schi 431/19-1. V.I.K. acknowledges support from the Russian Foundation for Basic Research under grant no. 15-02-01906-a. We thank U. Rosowski for important assistance with the frequency comb, A. Nevsky for assistance with a laser system, E. Wiens for characterizing H-maser instability, D. Iwaschko, R. Gusek and P. Dutkiewicz for electronics development, J. Scheuer and M. Melzer for assistance, and S. Schlemmer (Universität zu Köln) for equipment loans. We thank K. Brown (Georgia Institute of Technology) for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and M.G.H. developed the apparatus and performed the experiments; S.A., M.G.H. and S.S. analysed the data; S.A., S.S. and V.I.K. performed theoretical calculations; S.S. conceived the study, supervised the work and wrote the paper.

Corresponding author

Correspondence to S. Schiller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

zero chapters, 2 figures, 0 references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alighanbari, S., Hansen, M.G., Korobov, V.I. et al. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nature Phys 14, 555–559 (2018). https://doi.org/10.1038/s41567-018-0074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0074-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing