Abstract

Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light–matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

  2. 2.

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

  3. 3.

    Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

  4. 4.

    Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

  5. 5.

    Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012).

  6. 6.

    A. Sommer, Büchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at https://arxiv.org/abs/1506.00341 (2015).

  7. 7.

    Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

  8. 8.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

  9. 9.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

  10. 10.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  11. 11.

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

  12. 12.

    Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities. Nat. Phys. 5, 845–850 (2009).

  13. 13.

    Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

  14. 14.

    Kollár, A. J. et al. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8, 14386 (2017).

  15. 15.

    Purdy, T. P. et al. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010).

  16. 16.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

  17. 17.

    Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

  18. 18.

    Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and x y spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

  19. 19.

    Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

  20. 20.

    Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

  21. 21.

    Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

  22. 22.

    Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

  23. 23.

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

  24. 24.

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

  25. 25.

    Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

  26. 26.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

  27. 27.

    Guerlin, C., Brion, E., Esslinger, T. & Mølmer, K. Cavity quantum electrodynamics with a Rrydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010).

  28. 28.

    Boddeda, R. et al. Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity. J. Phys. B 49, 084005 (2016).

  29. 29.

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

  30. 30.

    Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).

  31. 31.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

  32. 32.

    Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Springer, Dordrecht, 1997).

  33. 33.

    Shore, B. W. & Knight, P. L. The Jaynes–Cummings model. J. Mod. Opt. 40, 1195–1238 (1993).

  34. 34.

    Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

  35. 35.

    Brion, E., Carlier, F., Akulin, V. M. & Mølmer, K. Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities. Phys. Rev. A 85, 042324 (2012).

  36. 36.

    Günter, G. et al. Interaction enhanced imaging of individual Rydberg atoms in dense gases. Phys. Rev. Lett. 108, 013002 (2012).

  37. 37.

    Hafezi, M., Adhikari, P. & Taylor, J. M. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).

  38. 38.

    Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

  39. 39.

    Grusdt, F. & Fleischhauer, M. Fractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields. Phys. Rev. A 87, 043628 (2013).

  40. 40.

    Grusdt, F., Yao, N. Y., Abanin, D., Fleischhauer, M. & Demler, E. Interferometric measurements of many-body topological invariants using mobile impurities. Nat. Commun. 7, 11994 (2016).

  41. 41.

    Umucallar, R. O. & Carusotto, I. Many-body braiding phases in a rotating strongly correlated photon gas. Phys. Lett. A 377, 2074–2078 (2013).

Download references

Acknowledgements

We would like to thank M. Fleischhauer and H. P. Buechler for fruitful conversations. This work was supported by DOE grant DE-SC0010267 for apparatus construction, DARPA grant W911NF-15-1-0620 for modelling, and MURI grant FA9550-16-1-0323 for data collection and analysis. A.G. acknowledges support from the UChicago MRSEC grant NSF-DMR-MRSEC 1420709. A.R. acknowledges support from the NDSEG Fellowship.

Author information

Author notes

    • Albert Ryou

    Present address: Department of Electrical Engineering, University of Washington, Seattle, WA, USA

    • Ariel Sommer

    Present address: Department of Physics, Lehigh University, Bethlehem, PA, USA

Affiliations

  1. Department of Physics and James Franck Institute, University of Chicago, Chicago, IL, USA

    • Ningyuan Jia
    • , Nathan Schine
    • , Alexandros Georgakopoulos
    • , Albert Ryou
    • , Logan W. Clark
    • , Ariel Sommer
    •  & Jonathan Simon

Authors

  1. Search for Ningyuan Jia in:

  2. Search for Nathan Schine in:

  3. Search for Alexandros Georgakopoulos in:

  4. Search for Albert Ryou in:

  5. Search for Logan W. Clark in:

  6. Search for Ariel Sommer in:

  7. Search for Jonathan Simon in:

Contributions

The experiment was designed and built by all authors. J.N., N.S., L.W.C. and J.S. collected and analysed the data. All authors contributed to the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jonathan Simon.

Supplementary information

  1. Supplementary Information

    Supplementary notes, supplementary figures 1–9, supplementary references

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41567-018-0071-6