Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A strongly interacting polaritonic quantum dot

Abstract

Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light–matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rydberg polariton blockade in an optical resonator.
Fig. 2: Nonlinear spectroscopy of a polaritonic quantum dot.
Fig. 3: Transport blockade of cavity Rydberg polaritons.
Fig. 4: Ring-up and ring-down dynamics of a polaritonic quantum dot.

Similar content being viewed by others

References

  1. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  2. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  3. Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

    Article  ADS  Google Scholar 

  4. Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  5. Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012).

    Article  ADS  Google Scholar 

  6. A. Sommer, Büchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at https://arxiv.org/abs/1506.00341 (2015).

  7. Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    Article  ADS  Google Scholar 

  8. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  9. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  10. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  11. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  12. Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose–Einstein condensates in multimode cavities. Nat. Phys. 5, 845–850 (2009).

    Article  Google Scholar 

  13. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  14. Kollár, A. J. et al. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8, 14386 (2017).

    Article  ADS  Google Scholar 

  15. Purdy, T. P. et al. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010).

    Article  ADS  Google Scholar 

  16. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  17. Hartmann, M. J., Brandao, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    Article  Google Scholar 

  18. Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and x y spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

    Article  ADS  Google Scholar 

  19. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  ADS  Google Scholar 

  20. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    Article  ADS  Google Scholar 

  21. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  22. Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

    Article  ADS  Google Scholar 

  23. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    Article  ADS  Google Scholar 

  24. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    Article  ADS  Google Scholar 

  25. Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

    Article  ADS  Google Scholar 

  26. Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

    Article  ADS  Google Scholar 

  27. Guerlin, C., Brion, E., Esslinger, T. & Mølmer, K. Cavity quantum electrodynamics with a Rrydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010).

    Article  ADS  Google Scholar 

  28. Boddeda, R. et al. Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity. J. Phys. B 49, 084005 (2016).

    Article  ADS  Google Scholar 

  29. Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

    Article  ADS  Google Scholar 

  30. Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).

    Article  ADS  Google Scholar 

  31. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  32. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Springer, Dordrecht, 1997).

  33. Shore, B. W. & Knight, P. L. The Jaynes–Cummings model. J. Mod. Opt. 40, 1195–1238 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  34. Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  ADS  Google Scholar 

  35. Brion, E., Carlier, F., Akulin, V. M. & Mølmer, K. Quantum repeater with Rydberg-blocked atomic ensembles in fiber-coupled cavities. Phys. Rev. A 85, 042324 (2012).

    Article  ADS  Google Scholar 

  36. Günter, G. et al. Interaction enhanced imaging of individual Rydberg atoms in dense gases. Phys. Rev. Lett. 108, 013002 (2012).

    Article  ADS  Google Scholar 

  37. Hafezi, M., Adhikari, P. & Taylor, J. M. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).

    Article  ADS  Google Scholar 

  38. Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

    Article  ADS  Google Scholar 

  39. Grusdt, F. & Fleischhauer, M. Fractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields. Phys. Rev. A 87, 043628 (2013).

    Article  ADS  Google Scholar 

  40. Grusdt, F., Yao, N. Y., Abanin, D., Fleischhauer, M. & Demler, E. Interferometric measurements of many-body topological invariants using mobile impurities. Nat. Commun. 7, 11994 (2016).

    Article  ADS  Google Scholar 

  41. Umucallar, R. O. & Carusotto, I. Many-body braiding phases in a rotating strongly correlated photon gas. Phys. Lett. A 377, 2074–2078 (2013).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Fleischhauer and H. P. Buechler for fruitful conversations. This work was supported by DOE grant DE-SC0010267 for apparatus construction, DARPA grant W911NF-15-1-0620 for modelling, and MURI grant FA9550-16-1-0323 for data collection and analysis. A.G. acknowledges support from the UChicago MRSEC grant NSF-DMR-MRSEC 1420709. A.R. acknowledges support from the NDSEG Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and built by all authors. J.N., N.S., L.W.C. and J.S. collected and analysed the data. All authors contributed to the manuscript.

Corresponding author

Correspondence to Jonathan Simon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, supplementary figures 1–9, supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Schine, N., Georgakopoulos, A. et al. A strongly interacting polaritonic quantum dot. Nature Phys 14, 550–554 (2018). https://doi.org/10.1038/s41567-018-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0071-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing