Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum Landauer erasure with a molecular nanomagnet

An Author Correction to this article was published on 20 April 2018

This article has been updated


The erasure of a bit of information is an irreversible operation whose minimal entropy production of kB ln 2 is set by the Landauer limit1. This limit has been verified in a variety of classical systems, including particles in traps2,3 and nanomagnets4. Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy–time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantum Landauer erasure of a molecular spin register.
Fig. 2: Susceptibility of the quantum MM during the Landauer erasure.
Fig. 3: Total bit reset work.
Fig. 4: Relaxation time and energy–time cost.

Change history

  • 20 April 2018

    In the version of this Letter originally published, the key to the green and open circles in Fig. 4 was reversed; it should have shown that the green circles correspond to ‘From χ versus T’ and the open circles correspond to ‘From χ versus Hy’. This has now been corrected in all versions of the Letter.


  1. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  MathSciNet  Google Scholar 

  2. Jun, Y., Gavrilov, M. & Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601–190605 (2014).

    Article  ADS  Google Scholar 

  3. Berut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  ADS  Google Scholar 

  4. Hong, J., Lambson, B., Dhuey, S. & Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, 1501492–1501497 (2016).

    Article  ADS  Google Scholar 

  5. Boechler, G. P., Whitney, J. M., Lent, C. S., Orlov, A. O. & Snider, G. L. Fundamental limits of energy dissipation in charge-based computing. Appl. Phys. Lett. 97, 103502–103504 (2010).

    Article  ADS  Google Scholar 

  6. Lambson, B., Carlton, D. & Bokor, J. Exploring the thermodynamic limits of computation in integrated systems: Magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107, 010604–010607 (2011).

    Article  ADS  Google Scholar 

  7. Gammaitoni, L., Chiuchiu, D., Madami, M. & Carlotti, G. Towards zero-power ICT. Nanotechnology 26, 222001–222010 (2015).

    Article  ADS  Google Scholar 

  8. Bennett, C. H. The thermodynamics of computation - a review. Int. J. Theor. Phys. 21, 905–940 (1982).

    Article  Google Scholar 

  9. Gerrits, T., van den Berg, H. A. M., Hohlfeld, J., Bar, L. & Rasing, T. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    Article  ADS  Google Scholar 

  10. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  11. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666–671 (2012).

    Article  ADS  Google Scholar 

  12. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, 1603117–1603122 (2017).

    Article  ADS  Google Scholar 

  13. Lloyd, S. Quantum-mechanical Maxwell’s demon. Phys. Rev. A 56, 3374–3382 (1997).

    Article  ADS  Google Scholar 

  14. Lesovik, G., Lebedev, A., Sadovskyy, I., Suslov, M. & Vinokur, V. H-theorem in quantum physics. Sci. Rep. 6, 32815–32821 (2016).

    Article  ADS  Google Scholar 

  15. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets Vol. 5 (Oxford Univ. Press, Oxford, 2006).

  16. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  ADS  Google Scholar 

  17. Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R. & Gatteschi, D. Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645–4648 (1997).

    Article  ADS  Google Scholar 

  18. Burzurì, E. et al. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet. Phys. Rev. Lett 111, 057201–057205 (2013).

    Article  ADS  Google Scholar 

  19. Burzurì, E. et al. Magnetic dipolar ordering and quantum phase transition in an Fe8 molecular magnet . Phys. Rev. Lett 107, 097203–097206 (2011).

    Article  ADS  Google Scholar 

  20. Luis, F., Bartolomé, J. & Fernández, J. F. Resonant magnetic quantum tunneling through thermally activated states. Phys. Rev. B 57, 505–513 (1998).

    Article  ADS  Google Scholar 

  21. Garanin, Da & Chudnovsky, E. M. Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others. Phys. Rev. B 56, 11102–11118 (1998).

    Article  ADS  Google Scholar 

  22. Leuenberger, M. N. & Loss, D. Spin relaxation in Mn12-acetate. Europhys. Lett. 46, 692–698 (1999).

    Article  ADS  Google Scholar 

  23. Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Physica D 120, 188–195 (1998).

    Article  ADS  Google Scholar 

  24. Lloyd, S. Ultimate physical limits to computation. Nature 406, 1047–1054 (2000).

    Article  ADS  Google Scholar 

  25. Campbell, S. & Deffner, S. Trade-off between speed and cost in shortcuts to adiabaticity. Phys. Rev. Lett. 118, 100601–100607 (2017).

    Article  ADS  Google Scholar 

Download references


The research reported here was supported by an advanced ERC grant (Mols@Mols). We also acknowledge financial support by the Dutch Organization for Fundamental research (NWO/FOM). E.B. acknowledges funds from the EU FP7 programme through the project 618082 ACMOL. F.L. acknowledges the Spanish MINECO (grant MAT2015-68204-R), the Gobierno de Aragón (grant E98-MOLCHIP) and the European Union (COST 15128 Molecular Spintronics project). R.G. especially thanks L. Gammaitoni for inspiring discussions.

Author information

Authors and Affiliations



R.G. conceived the idea; F.L., E.B. and R.G designed and performed the experiment; R.G., E.B., F.L. and H.S.J.v.d.Z. wrote the manuscript; S.M. synthesized the molecules. All authors contributed to the interpretation of the data and commented on the manuscript.

Corresponding author

Correspondence to R. Gaudenzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Supplementary Figures 1–12,Supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaudenzi, R., Burzurí, E., Maegawa, S. et al. Quantum Landauer erasure with a molecular nanomagnet. Nature Phys 14, 565–568 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing