Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond optical-field-enhanced carrier injection into the GaAs conduction band

Abstract

Resolving the fundamental carrier dynamics induced in solids by strong electric fields is essential for future applications, ranging from nanoscale transistors1,2 to high-speed electro-optical switches3. How fast and at what rate can electrons be injected into the conduction band of a solid? Here, we investigate the sub-femtosecond response of GaAs induced by resonant intense near-infrared laser pulses using attosecond transient absorption spectroscopy. In particular, we unravel the distinct role of intra- versus interband transitions. Surprisingly, we found that despite the resonant driving laser, the optical response during the light–matter interaction is dominated by intraband motion. Furthermore, we observed that the coupling between the two mechanisms results in a significant enhancement of the carrier injection from the valence into the conduction band. This is especially unexpected as the intraband mechanism itself can accelerate carriers only within the same band. This physical phenomenon could be used to control ultrafast carrier excitation and boost injection rates in electronic switches in the petahertz regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pump–probe mechanism in GaAs.
Fig. 2: Attosecond transient absorption spectroscopy.
Fig. 3: Simulated energy- and delay-dependent change of the absorbance.
Fig. 4: Time evolution of the real electron population nCB in the CB extracted from the three-band model.

Similar content being viewed by others

References

  1. Mei, X. et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Device Lett. 36, 327–329 (2015).

    Article  ADS  Google Scholar 

  2. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  ADS  Google Scholar 

  3. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon.8, 205–213 (2014).

    Article  ADS  Google Scholar 

  4. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  ADS  Google Scholar 

  5. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys.12, 741–745 (2016).

    Article  Google Scholar 

  6. Sommer, A. et al. Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86–90 (2016).

    Article  ADS  Google Scholar 

  7. Zürch, M. et al. Ultrafast carrier thermalization and trapping in silicon–germanium alloy probed by extreme ultraviolet transient absorption spectroscopy. Struct. Dyn. 4, 044029 (2017).

    Article  Google Scholar 

  8. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    Article  ADS  Google Scholar 

  9. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  10. Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  ADS  Google Scholar 

  11. Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    Article  ADS  Google Scholar 

  12. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys.7, 138–141 (2011).

    Article  Google Scholar 

  13. Malard, L. M., Mak, K. F., Castro Neto, A. H., Peres, N. M. R. & Heinz, T. F. Observation of intra- and inter-band transitions in the transient optical response of graphene. New J. Phys. 15, 015009 (2013).

    Article  ADS  Google Scholar 

  14. Al-Naib, I., Sipe, J. E. & Dignam, M. M. High harmonic generation in undoped graphene: Interplay of inter- and intraband dynamics. Phys. Rev. B 90, 245423 (2014).

    Article  ADS  Google Scholar 

  15. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  16. Wismer, M. S., Kruchinin, S. Y., Ciappina, M., Stockman, M. I. & Yakovlev, V. S. Strong-field resonant dynamics in semiconductors. Phys. Rev. Lett. 116, 197401 (2016).

    Article  ADS  Google Scholar 

  17. Paasch-Colberg, T. et al. Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica 3, 1358 (2016).

    Article  ADS  Google Scholar 

  18. Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

    Article  ADS  Google Scholar 

  19. Locher, R. et al. Versatile attosecond beamline in a two-foci configuration for simultaneous time-resolved measurements. Rev. Sci. Instrum. 85, 013113 (2014).

    Article  ADS  Google Scholar 

  20. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  21. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  22. Schlaepfer, F. et al. Gouy phase shift for annular beam profiles in attosecond experiments. Opt. Express 25, 3646–3655 (2017).

    Article  ADS  Google Scholar 

  23. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 62, 15764–15777 (2000).

    Article  ADS  Google Scholar 

  24. Sato, S. A., Yabana, K., Shinohara, Y., Otobe, T. & Bertsch, G. F. Numerical pump–probe experiments of laser-excited silicon in nonequilibrium phase. Phys. Rev. B 89, 064304 (2014).

    Article  ADS  Google Scholar 

  25. Houston, W. V. Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  26. Srivastava, A., Srivastava, R., Wang, J. & Kono, J. Laser-induced above-band-gap transparency in GaAs. Phys. Rev. Lett. 93, 157401 (2004).

    Article  ADS  Google Scholar 

  27. Novelli, F., Fausti, D., Giusti, F., Parmigiani, F. & Hoffmann, M. Mixed regime of light–matter interaction revealed by phase sensitive measurements of the dynamical Franz–Keldysh effect. Sci. Rep. 3, 1227 (2013).

    Article  ADS  Google Scholar 

  28. Bakos, J. S. AC stark effect and multiphoton processes in atoms. Phys. Rep. 31, 209–235 (1977).

    Article  ADS  Google Scholar 

  29. Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).

    Article  ADS  Google Scholar 

  30. Kraut, E. A., Grant, R. W., Waldrop, J. R. & Kowalczyk, S. P. Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620–1623 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. C. Golling for growing the GaAs, and J. Leuthold and C. Bolognesi for helpful discussion. The authors acknowledge the support of the technology and cleanroom facility at Frontiers in Research: Space and Time (FIRST) of ETH Zurich for advanced micro- and nanotechnology. This work was supported by the National Center of Competence in Research Molecular Ultrafast Science and Technology (NCCR MUST) funded by the Swiss National Science Foundation, and by JSPS KAKENHI grant no. 26-1511.

Author information

Authors and Affiliations

Authors

Contributions

F.S., M.L., L.G. and U.K. supervised the study. F.S., M.L., M.V., L.K. and N.H. conducted the experiments. M.V. also improved the experimental set-up and data acquisition system. F.S. fabricated the sample and analysed the experimental data. S.A.S. and A.R. developed the theoretical modelling. All authors were involved in the interpretation and contributed to the final manuscript.

Corresponding authors

Correspondence to F. Schlaepfer or U. Keller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1–13, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlaepfer, F., Lucchini, M., Sato, S.A. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nature Phys 14, 560–564 (2018). https://doi.org/10.1038/s41567-018-0069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0069-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing