Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum non-demolition detection of an itinerant microwave photon

Abstract

Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6,7,8,9,10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a ‘click’. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13,14,15,16,17,18,19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Circuit quantum electrodynamics set-up for the QND detection of an itinerant microwave photon.
Fig. 2: QND detection of an itinerant microwave photon.
Fig. 3: Quantum state tomography of the reflected pulse mode.
Fig. 4: Qubit–photon entanglement.

References

  1. 1.

    Walls, D. F. & Milburn, G. J. Quantum Optics. (Springer: Berlin, 1994).

    Book  Google Scholar 

  2. 2.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).

    ADS  Article  Google Scholar 

  6. 6.

    Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A. 32, 2287–2292 (1985).

    ADS  Article  Google Scholar 

  7. 7.

    Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    Helmer, F., Mariantoni, M., Solano, E. & Marquardt, F. Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect. Phys. Rev. A. 79, 052115 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Sathyamoorthy, S. R. et al. Quantum nondemolition detection of a propagating microwave photon. Phys. Rev. Lett. 112, 093601 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Royer, B., Grimsmo, A. L., Choquette-Poitevin, A. & Blais, A. Itinerant microwave photon detector. Preprint at https://arxiv.org/abs/1710.06040 (2017).

  11. 11.

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Bretheau, L., Campagne-Ibarcq, P., Flurin, E., Mallet, F. & Huard, B. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

  17. 17.

    Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

    Article  Google Scholar 

  18. 18.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).

    Google Scholar 

  20. 20.

    Chen, Y.-F. et al. Microwave photon counter based on Josephson junctions. Phys. Rev. Lett. 107, 217401 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

    ADS  Article  Google Scholar 

  23. 23.

    Johnson, B. R. et al. Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663–667 (2010).

    Article  Google Scholar 

  24. 24.

    Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Magesan, E., Gambetta, J. M., Corcoles, A. D. & Chow, J. M. Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B Quantum Semiclassical Opt. 6, S556–S559 (2004).

    ADS  Article  Google Scholar 

  28. 28.

    Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    ADS  Article  Google Scholar 

  29. 29.

    Besse, J.-C. et al. Single-shot quantum non-demolition detection of itinerant microwave photons. Preprint at https://arxiv.org/abs/1711.11569 (2017).

  30. 30.

    Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

    ADS  Article  Google Scholar 

  31. 31.

    Kindel, W. F., Schroer, M. D. & Lehnert, K. W. Generation and efficient measurement of single photons from fixed-frequency superconducting qubits. Phys. Rev. A 93, 033817 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Leonhardt, U Measuring the Quantum State of Light. (Cambridge Univ. Press: Cambridge, 1997).

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the fruitful discussions with T. Serikawa, T. Sugiyama, Y. Shikano, R. Yamazaki and K. Usami. This work was supported in part by the Advanced Leading Graduate Course for Photon Science (ALPS), the University of Tokyo, the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) (no. 16K05497 and no. 26220601), and the Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO) (grant no. JPMJER1601).

Author information

Affiliations

Authors

Contributions

S.K. performed the experiments. K.K. provided the theoretical support. S.K., Y.T. and A.N. participated in discussions on the analysis. S.K., K.K. and Y.N. wrote the manuscript with feedback from all authors. Y.N. supervised the project.

Corresponding authors

Correspondence to S. Kono or Y. Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kono, S., Koshino, K., Tabuchi, Y. et al. Quantum non-demolition detection of an itinerant microwave photon. Nature Phys 14, 546–549 (2018). https://doi.org/10.1038/s41567-018-0066-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing