Letter | Published:

Quantum non-demolition detection of an itinerant microwave photon

Nature Physicsvolume 14pages546549 (2018) | Download Citation


Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6,7,8,9,10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a ‘click’. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13,14,15,16,17,18,19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Walls, D. F. & Milburn, G. J. Quantum Optics. (Springer: Berlin, 1994).

  2. 2.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

  3. 3.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  4. 4.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

  5. 5.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).

  6. 6.

    Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A. 32, 2287–2292 (1985).

  7. 7.

    Grangier, P., Levenson, J. A. & Poizat, J.-P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

  8. 8.

    Helmer, F., Mariantoni, M., Solano, E. & Marquardt, F. Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect. Phys. Rev. A. 79, 052115 (2009).

  9. 9.

    Sathyamoorthy, S. R. et al. Quantum nondemolition detection of a propagating microwave photon. Phys. Rev. Lett. 112, 093601 (2014).

  10. 10.

    Royer, B., Grimsmo, A. L., Choquette-Poitevin, A. & Blais, A. Itinerant microwave photon detector. Preprint at https://arxiv.org/abs/1710.06040 (2017).

  11. 11.

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

  12. 12.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

  13. 13.

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

  14. 14.

    Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).

  15. 15.

    Bretheau, L., Campagne-Ibarcq, P., Flurin, E., Mallet, F. & Huard, B. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015).

  16. 16.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

  17. 17.

    Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

  18. 18.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

  19. 19.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).

  20. 20.

    Chen, Y.-F. et al. Microwave photon counter based on Josephson junctions. Phys. Rev. Lett. 107, 217401 (2011).

  21. 21.

    Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

  22. 22.

    Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

  23. 23.

    Johnson, B. R. et al. Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663–667 (2010).

  24. 24.

    Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

  25. 25.

    Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

  26. 26.

    Magesan, E., Gambetta, J. M., Corcoles, A. D. & Chow, J. M. Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015).

  27. 27.

    Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B Quantum Semiclassical Opt. 6, S556–S559 (2004).

  28. 28.

    Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

  29. 29.

    Besse, J.-C. et al. Single-shot quantum non-demolition detection of itinerant microwave photons. Preprint at https://arxiv.org/abs/1711.11569 (2017).

  30. 30.

    Gambetta, J. et al. Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).

  31. 31.

    Kindel, W. F., Schroer, M. D. & Lehnert, K. W. Generation and efficient measurement of single photons from fixed-frequency superconducting qubits. Phys. Rev. A 93, 033817 (2016).

  32. 32.

    Leonhardt, U Measuring the Quantum State of Light. (Cambridge Univ. Press: Cambridge, 1997).

Download references


We acknowledge the fruitful discussions with T. Serikawa, T. Sugiyama, Y. Shikano, R. Yamazaki and K. Usami. This work was supported in part by the Advanced Leading Graduate Course for Photon Science (ALPS), the University of Tokyo, the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) (no. 16K05497 and no. 26220601), and the Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO) (grant no. JPMJER1601).

Author information


  1. Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo, Japan

    • S. Kono
    • , Y. Tabuchi
    • , A. Noguchi
    •  & Y. Nakamura
  2. College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan

    • K. Koshino
  3. Center for Emergent Matter Science (CEMS), RIKEN, Wako, Japan

    • Y. Nakamura


  1. Search for S. Kono in:

  2. Search for K. Koshino in:

  3. Search for Y. Tabuchi in:

  4. Search for A. Noguchi in:

  5. Search for Y. Nakamura in:


S.K. performed the experiments. K.K. provided the theoretical support. S.K., Y.T. and A.N. participated in discussions on the analysis. S.K., K.K. and Y.N. wrote the manuscript with feedback from all authors. Y.N. supervised the project.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to S. Kono or Y. Nakamura.

Supplementary information

  1. Supplementary Information

    Supplementary notes, figures and references

About this article

Publication history




Issue Date



Further reading