Topological antiferromagnetic spintronics

Abstract

The recent demonstrations of electrical manipulation and detection of antiferromagnetic spins have opened up a new chapter in the story of spintronics. Here, we review the emerging research field that is exploring the links between antiferromagnetic spintronics and topological structures in real and momentum space. Active topics include proposals to realize Majorana fermions in antiferromagnetic topological superconductors, to control topological protection and Dirac points by manipulating antiferromagnetic order parameters, and to exploit the anomalous and topological Hall effects of zero-net-moment antiferromagnets. We explain the basic concepts behind these proposals, and discuss potential applications of topological antiferromagnetic spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed topological states in antiferromagnetic heterostructures.
Fig. 2: Topological metal–insulator transition in the antiferromagnetic Dirac semimetal CuMnAs.
Fig. 3: Prediction and observation of Weyl fermions in non-collinear AFs.
Fig. 4: Observed anomalous and topological Hall effects in non-collinear AFs.
Fig. 5: Antiferromagnetic skyrmion concept.
Fig. 6: Prospective applications based on topological AFs.

Change history

  • 30 May 2018

    In the version of this Review Article originally published, three of the citations corresponded to the wrong references. Ref. 16 should have corresponded to Nature 533, 513–516 (2016), ref. 17 to Nat. Mater. 16, 94–100 (2016), and ref. 18 to Phys. Rev. Appl. 6, 054001 (2016).

References

  1. 1.

    Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quant. Inf. 1, 15001 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Beenakker, C. W. J. & Kouwenhoven, L. A road to reality with topological superconductors. Nat. Phys. 12, 618–621 (2016).

    Article  Google Scholar 

  3. 3.

    Hasan, M. Z. & Kane, C. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Fan, Y. & Wang, K. L. Spintronics based on topological insulators. SPIN 06, 1640001 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Wang, H. et al. Surface-state-dominated spin–charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures. Phys. Rev. Lett. 117, 076601 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Spin–orbit coupling induced emergent phenomena at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  Google Scholar 

  7. 7.

    Pesin, D. A. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Wu, J., Liu, J. & Liu, X. J. Topological spin texture in a quantum anomalous Hall insulator. Phys. Rev. Lett. 113, 136403 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Felser, C. & Yan, B. Weyl semimetals: magnetically induced. Nat. Mater. 15, 1149–1150 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Šmejkal, L., Jungwirth, T. & Sinova, J. Route towards Dirac and Weyl antiferromagnetic spintronics. Phys. Status Solidi Rapid Res. Lett. 11, 1700044 (2017).

    Article  ADS  Google Scholar 

  14. 14.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Han, J. et al. Room-temperature spin–orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    He, Q. L. et al. Tailoring exchange couplings in magnetic topological insulator/antiferromagnet heterostructures. Nat. Mater. 16, 94–100 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Finley, J. & Liu, L. Spin–orbit torque efficiency in compensated ferrimagnetic cobalt–terbium alloys. Phys. Rev. Appl. 6, 054001 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Park, J. et al. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Phys. Rev. Lett. 107, 126402 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Wang, K., Graf, D., Lei, H., Tozer, S. W. & Petrovic, C. Quantum transport of two-dimensional Dirac fermions in SrMnBi2. Phys. Rev. B 84, 220401(R) (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Masuda, H. et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Richard, P. et al. Observation of Dirac cone electronic dispersion in BaFe2As2. Phys. Rev. Lett. 104, 137001 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Chen, Z.-G. et al. Two-dimensional massless Dirac fermions in antiferromagnetic AFe2As2 (A = Ba, Sr). Phys. Rev. Lett. 119, 096401 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Liu, C. et al. Metallic surface electronic state in half-Heusler compounds RPtBi (R= Lu, Dy, Gd). Phys. Rev. B 83, 205133 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Wang, Z. F. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 15, 968–973 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Niu, C. et al. Quantum spin Hall effect and topological phase transitions in honeycomb antiferromagnets. Preprint at https://arxiv.org/pdf/1705.07035.pdf (2017).

  28. 28.

    He, Q. L. et al. Topological transitions induced by antiferromagnetism in a thin-film topological insulator. Preprint at https://arxiv.org/pdf/1612.01661.pdf (2016).

  29. 29.

    Mogi, M. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater 16, 516–522 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 10561068 (2017).

    Article  Google Scholar 

  31. 31.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Dong, X.-Y., Kanungo, S., Yan, B. & Liu, C.-X. Time-reversal-breaking topological phases in antiferromagnetic Sr2FeOsO6 films. Phys. Rev. B 94, 245135 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Yang, K. Y., Lu, Y. M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  Article  MathSciNet  Google Scholar 

  36. 36.

    Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Pletikosic, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys. Rev. Lett. 113, 216601 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    Article  Google Scholar 

  42. 42.

    Kargarian, M., Randeria, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected?. Proc. Natl Acad. Sci. USA 113, 8648–8652 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    Article  Google Scholar 

  44. 44.

    Šmejkal, L., Żelezný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin–orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Young, S. M. & Wieder, B. J. Filling-enforced magnetic Dirac semimetals in two dimensions. Phys. Rev. Lett. 118, 186401 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin-transport and spin-torque in antiferromagnetic devices. Nat. Phys. https://doi.org/s41567-018-0062-7 (2018).

  47. 47.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–591 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Tian, Z. et al. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys. 12, 134–138 (2016).

    Article  Google Scholar 

  49. 49.

    Wakeham, N., Bauer, E. D., Neupane, M. & Ronning, F. Large magnetoresistance in the antiferromagnetic semimetal NdSb. Phys. Rev. B 93, 205152 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  51. 51.

    Sushkov, A. B. et al. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7. Phys. Rev. B 92, 241108(R) (2015).

    ADS  Article  Google Scholar 

  52. 52.

    Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at https://arxiv.org/ftp/arxiv/papers/1507/1507.04847.pdf (2015).

  53. 53.

    Chinotti, M., Pal, A., Ren, W. J., Petrovic, C. & Degiorgi, L. Electrodynamic response of the type-II Weyl semimetal YbMnBi2. Phys. Rev. B 94, 245101 (2016).

    ADS  Article  Google Scholar 

  54. 54.

    Wang, A. et al. Magnetotransport study of Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 94, 165161 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Chaudhuri, D. et al. Optical investigation of the strong spin–orbit-coupled magnetic semimetal YbMnBi2. Phys. Rev. B 96, 075151 (2017).

    ADS  Article  Google Scholar 

  56. 56.

    Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    ADS  Article  Google Scholar 

  57. 57.

    Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  Article  Google Scholar 

  58. 58.

    Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt). Phys. Rev. B 95, 075128 (2017).

    ADS  Article  Google Scholar 

  59. 59.

    Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    ADS  Article  Google Scholar 

  60. 60.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Article  Google Scholar 

  61. 61.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  Article  Google Scholar 

  62. 62.

    Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    ADS  Article  Google Scholar 

  63. 63.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015 (1988).

    ADS  Article  Google Scholar 

  64. 64.

    Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).

    ADS  Article  Google Scholar 

  65. 65.

    Tomizawa, T. & Kontani, H. Anomalous Hall effect in the t 2g orbital kagome lattice due to noncollinearity: significance of the orbital Aharonov–Bohm effect. Phys. Rev. B 80, 100401 (2009).

    ADS  Article  Google Scholar 

  66. 66.

    Tomizawa, T. & Kontani, H. Anomalous Hall effect due to noncollinearity in pyrochlore compounds: role of orbital Aharonov–Bohm effect. Phys. Rev. B 82, 104412 (2010).

    ADS  Article  Google Scholar 

  67. 67.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Article  Google Scholar 

  68. 68.

    Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    ADS  Article  Google Scholar 

  69. 69.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  Article  Google Scholar 

  70. 70.

    Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    Article  Google Scholar 

  71. 71.

    Zhou, P., Sun, C. Q. & Sun, L. Z. Two dimensional antiferromagnetic Chern insulator: NiRuCl6. Nano. Lett. 16, 6325–6330 (2016).

    ADS  Article  Google Scholar 

  72. 72.

    Sekine, A. & Nomura, K. Chiral magnetic effect and anomalous Hall effect in antiferromagnetic insulators with spin–orbit coupling. Phys. Rev. Lett. 116, 096401 (2016).

    ADS  Article  Google Scholar 

  73. 73.

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    ADS  Article  Google Scholar 

  74. 74.

    Hoffmann, M. et al. Topological orbital magnetization and emergent Hall effect of an atomic-scale spin lattice at a surface. Phys. Rev. B 92, 020401 (2015).

    ADS  Article  Google Scholar 

  75. 75.

    Hanke, J. P. et al. Role of Berry phase theory for describing orbital magnetism: from magnetic heterostructures to topological orbital ferromagnets. Phys. Rev. B 94, 121114(R) (2016).

    ADS  Article  Google Scholar 

  76. 76.

    Hanke, J.-P., Freimuth, F., Blügel, S. & Mokrousov, Y. Prototypical topological orbital ferromagnet – FeMn. Sci. Rep. 7, 41078 (2017).

    ADS  Article  Google Scholar 

  77. 77.

    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS  Article  Google Scholar 

  78. 78.

    Sürgers, C., Fischer, G., Winkel, P. & Löhneysen, H. V. Large topological Hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 5, 3400 (2014).

    Article  ADS  Google Scholar 

  79. 79.

    Sürgers, C., Kittler, W., Wolf, T. & v. Löhneysen, H. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3. AIP Adv. 6, 055604 (2016).

    ADS  Article  Google Scholar 

  80. 80.

    Ritz, R. et al. Giant generic topological Hall resistivity of MnSi under pressure. Phys. Rev. B 87, 1–17 (2013).

    Article  Google Scholar 

  81. 81.

    Zhou, J. et al. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K0.5RhO2. Phys. Rev. Lett. 116, 256601 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Hanke, J.-P., Freimuth, F., Niu, C., Blügel, S. & Mokrousov, M. Mixed Weyl semimetals and low-dissipation magnetization control in insulators by spin–orbit torques. Nat. Commun. 8, 1479 (2017).

    ADS  Article  Google Scholar 

  83. 83.

    Sun, Y., Zhang, Y., Felser, C. & Yan, B. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett. 117, 146403 (2016).

    ADS  Article  Google Scholar 

  84. 84.

    Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a chiral magnetic lattice without spin–orbit coupling. Preprint at https://arxiv.org/pdf/1704.03917.pdf (2017).

  85. 85.

    Yin, G., Liu, Y., Barlas, Y., Zang, J. & Lake, R. K. Topological spin Hall effect resulting from magnetic skyrmions. Phys. Rev. B 92, 024411 (2015).

    ADS  Article  Google Scholar 

  86. 86.

    Göbel, B., Mook, A., Henk, J. & Mertig, I. Antiferromagnetic skyrmion crystals: generation, topological Hall, and topological spin Hall effect. Phys. Rev. B 96, 060406 (2017).

    Article  ADS  Google Scholar 

  87. 87.

    Finocchio, G., Büttner, F., Tomasello, R., Carpentieri, M. & Kläui, M. Magnetic skyrmions: from fundamental to applications. J. Phys. D: Appl. Phys. 49, 423001 (2016).

    ADS  Article  Google Scholar 

  88. 88.

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    ADS  Article  Google Scholar 

  89. 89.

    Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 93, 214412 (2016).

    ADS  Article  Google Scholar 

  90. 90.

    Bogdanov, A. N., Rößler, U. K., Wolf, M. & Müller, K.-H. Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets. Phys. Rev. B 66, 214410 (2002).

    ADS  Article  Google Scholar 

  91. 91.

    Morinari, T. in The Multifaceted Skyrmion (eds Brown, G. E. & Rho, M.) 311–331 (World Scientific, Singapore, 2010).

  92. 92.

    Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

    ADS  Article  Google Scholar 

  93. 93.

    Jin, C., Song, C., Wang, J. & Liu, Q. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect. Appl. Phys. Lett. 109, 182404 (2016).

    ADS  Article  Google Scholar 

  94. 94.

    Velkov, H. et al. Phenomenology of current-induced skyrmion motion in antiferromagnets. New J. Phys. 18, 075016 (2016).

    ADS  Article  Google Scholar 

  95. 95.

    Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    ADS  Article  Google Scholar 

  96. 96.

    Buhl, B. M., Freimuth, F., Blügel, S. & Mokrousov, Y. Topological spin Hall effect in antiferromagnetic skyrmions. Phys. Status Solidi Rapid Res. Lett. 11, 1700007 (2017).

    ADS  Article  Google Scholar 

  97. 97.

    Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Preprint at https://arxiv.org/ftp/arxiv/papers/1703/1703.10310.pdf (2017).

  98. 98.

    Ghosh, S. & Manchon, A. Spin–orbit torque in two-dimensional antiferromagnetic topological insulators. Phys. Rev. B 95, 035422 (2017).

    ADS  Article  Google Scholar 

  99. 99.

    Kandala, A., Richardella, A., Kempinger, S., Liu, C. X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).

    Article  Google Scholar 

  100. 100.

    Carbone, C. et al. Asymmetric band gaps in a Rashba film system. Phys. Rev. B 93, 125409 (2016).

    ADS  Article  Google Scholar 

  101. 101.

    Xue, Q.-K. Nanoelectronics: a topological twist for transistors. Nat. Nanotech. 6, 197–198 (2011).

    ADS  Article  Google Scholar 

  102. 102.

    Tsai, W.-F. & Lin, H. Topological insulators and superconductivity: the integrity of two sides. Nat. Mater. 15, 927–928 (2016).

    ADS  Article  Google Scholar 

  103. 103.

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    ADS  Article  Google Scholar 

  104. 104.

    Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Status Solidi Rapid Res. Lett. 11, 1600360 (2017).

    ADS  Article  Google Scholar 

  105. 105.

    Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

    ADS  Article  Google Scholar 

  106. 106.

    Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  Google Scholar 

  107. 107.

    Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    ADS  Article  Google Scholar 

  108. 108.

    Higo, T. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon 12, 73–78 (2018).

    ADS  Article  Google Scholar 

  109. 109.

    Liu, J. et al. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 13, 178–183 (2013).

    ADS  Article  Google Scholar 

  110. 110.

    Zhang, S., Baker, A. A., Komineas, S. & Hesjedal, T. Topological computation based on direct magnetic logic communication. Sci. Rep. 5, 15773 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

L.Š. acknowledges support from the Grant Agency of Charles University, no. 280815, and EU FET Open RIA Grant 766566. We acknowledge support from the Ministry of Education of the Czech Republic Grants LM2015087 and LNSM-LNSpin, and the Grant Agency of the Czech Republic Grant 14-37427G. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme ‘Projects of Large Research, Development, and Innovations Infrastructures’ (CESNET LM2015042) is greatly appreciated. Y.M. acknowledges funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, Grant MO 1731/5-1). B.Y. acknowledges the support of the Ruth and Herman Albert Scholars Program for New Scientists at Weizmann Institute of Science, Israel. A.H.M. was supported by SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award SC0012670, Army Research Office (ARO) under Contract No. W911NF-15-1-0561:P00001, and by Welch Foundation Grant TBF1473.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Libor Šmejkal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šmejkal, L., Mokrousov, Y., Yan, B. et al. Topological antiferromagnetic spintronics. Nature Phys 14, 242–251 (2018). https://doi.org/10.1038/s41567-018-0064-5

Download citation

Further reading