New developments in spintronics based on antiferromagnetic materials show promise for improved fundamental understanding and applications in technology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tailoring elastic and inelastic collisions of relativistic antiferromagnetic domain walls
Scientific Reports Open Access 30 November 2023
-
Current-driven writing process in antiferromagnetic Mn2Au for memory applications
Nature Communications Open Access 03 April 2023
-
High-frequency spin torque oscillation in orthogonal magnetization disks with strong biquadratic magnetic coupling
Scientific Reports Open Access 03 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

adapted from ref. 47, Macmillan Publishers Ltd
References
Chappert, C., Fert, A. & Van Dau, F. N. Nat. Mater. 6, 813–823 (2007).
Brataas, A., Kent, A. D. & Ohno, H. Nat. Mater. 11, 372–381 (2012).
Kent, A. D. & Worledge, D. C. Nat. Nanotech. 10, 187–191 (2015).
Waldrop, M. M. Nature 530, 144–147 (2016).
MacDonald, A. H. & Tsoi, M. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).
Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17–35 (2014).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Nat. Nanotech. 11, 231–241 (2016).
Baltz, V. et al. Preprint at https://arxiv.org/abs/1606.04284 (2016).
Wolf, S. A. et al. Science 294, 1488–1495 (2001).
Néel, L. in Nobel Lectures, Physics 1963–1970 318–341 (Elsevier, Amsterdam, 1972).
Wadley, P. et al. Science 351, 587–591 (2016).
Marrows, C. Science 351, 558–559 (2016).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Rev. Mod. Phys. 87, 1213–1260 (2015).
Pulizzi, F. Nat. Mater. 11, 367 (2012).
Sinova, J. & Jungwirth, T. Phys. Today 70, 38–42 (July, 2017).
Miron, I. M. et al. Nature 476, 189–193 (2011).
Liu, L. et al. Science 336, 555–558 (2012).
Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).
Olejník, K. et al. Nat. Commun. 8, 15434 (2017).
Bodnar, S. Yu. et al. Nat. Commun. 9, 348 (2018).
Meinert, M., Graulich, D. & Matalla-Wagner, T. Preprint at https://arxiv.org/abs/1706.06983 (2017).
Kriegner, D. et al. Nat. Commun. 7, 11623 (2016).
Borders, W. A. et al. Appl. Phys. Express 10, 013007 (2017).
Olejnik, K. et al. Preprint at https://arxiv.org/abs/1711.08444 (2017).
Garello, K. et al. Appl. Phys. Lett. 105, 212402 (2014).
Prenat, G. et al. IEEE Trans. Multi-Scale Comput. Sys 2, 49–60 (2016).
Roy, P., Otxoa, R. M. & Wunderlich, J. Phys. Rev. B 94, 014439 (2016).
Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Nature 429, 850–853 (2004).
Manz, S. et al. Nat. Photon. 10, 653–656 (2016).
Baierl, S. et al. Nat. Photon. 10, 715–718 (2016).
Bossini, D. et al. Nat. Commun. 7, 10645 (2016).
Saidl, V. et al. Nat. Photon. 11, 91–97 (2017).
Kittel, C. Phys. Rev. 82, 565–565 (1951).
Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).
Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).
Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).
Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).
Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep. 6, 24795 (2016).
Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).
Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).
Zhang, X., Ezawa, M. & Zhou, Y. Phys. Rev. B 94, 064406 (2016).
Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Nat. Phys. 12, 1100–1104 (2016).
Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Phys. Rev. Lett. 118, 106402 (2017).
Wang, Z. F. et al. Nat. Mater. 15, 968–973 (2016).
Yang, H. et al. New J. Phys. 19, 015008 (2017).
Chen, H., Niu, Q. & MacDonald, A. H. Phys. Rev. Lett. 112, 017205 (2014).
Nakatsuji, S., Kiyohara, N. & Higo, T. Nature 527, 212–216 (2015).
Sürgers, C., Fischer, G., Winkel, P. & Löhneysen, H. V. Nat. Commun. 5, 3400 (2014).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Phys. Rev. Lett. 119, 187204 (2017).
Park, B. G. et al. Nat. Mater. 10, 347–351 (2011).
Acknowledgements
The authors acknowledge the EU FET Open RIA Grant No. 766566, the Alexander von Humboldt Foundation, the Transregional Collaborative Research Center (SFB/TRR) No. 173 SPIN+X, the Grant Agency of the Czech Republic Grant No. 14-37427G, the Ministry of Education of the Czech Republic Grant Nos LM2015087 and LNSM-LNSpin, the ERC Synergy Grant No. 610115, and the King Abdullah University of Science and Technology Grant No. OSR-2015-CRG4-2626.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jungwirth, T., Sinova, J., Manchon, A. et al. The multiple directions of antiferromagnetic spintronics. Nature Phys 14, 200–203 (2018). https://doi.org/10.1038/s41567-018-0063-6
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0063-6
This article is cited by
-
High-frequency spin torque oscillation in orthogonal magnetization disks with strong biquadratic magnetic coupling
Scientific Reports (2023)
-
Evolution of anisotropic magnetic properties through helix-to-fan transition in helical antiferromagnetic EuCo2As2
Communications Physics (2023)
-
Current-driven writing process in antiferromagnetic Mn2Au for memory applications
Nature Communications (2023)
-
Tailoring elastic and inelastic collisions of relativistic antiferromagnetic domain walls
Scientific Reports (2023)
-
The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics
Applied Physics A (2023)