The multiple directions of antiferromagnetic spintronics

New developments in spintronics based on antiferromagnetic materials show promise for improved fundamental understanding and applications in technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental antiferromagnetic memory device.

adapted from ref. 15, AIP (a); ref. 19, Macmillan Publishers Ltd (b); and ref. 11, AAAS (c)

Fig. 2: Antiferromagnetic anomalous Hall effect.

adapted from ref. 47, Macmillan Publishers Ltd

References

  1. 1.

    Chappert, C., Fert, A. & Van Dau, F. N. Nat. Mater. 6, 813–823 (2007).

  2. 2.

    Brataas, A., Kent, A. D. & Ohno, H. Nat. Mater. 11, 372–381 (2012).

  3. 3.

    Kent, A. D. & Worledge, D. C. Nat. Nanotech. 10, 187–191 (2015).

  4. 4.

    Waldrop, M. M. Nature 530, 144–147 (2016).

  5. 5.

    MacDonald, A. H. & Tsoi, M. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).

  6. 6.

    Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17–35 (2014).

  7. 7.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Nat. Nanotech. 11, 231–241 (2016).

  8. 8.

    Baltz, V. et al. Preprint at https://arxiv.org/abs/1606.04284 (2016).

  9. 9.

    Wolf, S. A. et al. Science 294, 1488–1495 (2001).

  10. 10.

    Néel, L. in Nobel Lectures, Physics 1963–1970 318–341 (Elsevier, Amsterdam, 1972).

  11. 11.

    Wadley, P. et al. Science 351, 587–591 (2016).

  12. 12.

    Marrows, C. Science 351, 558–559 (2016).

  13. 13.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Rev. Mod. Phys. 87, 1213–1260 (2015).

  14. 14.

    Pulizzi, F. Nat. Mater. 11, 367 (2012).

  15. 15.

    Sinova, J. & Jungwirth, T. Phys. Today 70, 38–42 (July, 2017).

  16. 16.

    Miron, I. M. et al. Nature 476, 189–193 (2011).

  17. 17.

    Liu, L. et al. Science 336, 555–558 (2012).

  18. 18.

    Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).

  19. 19.

    Olejník, K. et al. Nat. Commun. 8, 15434 (2017).

  20. 20.

    Bodnar, S. Yu. et al. Nat. Commun. 9, 348 (2018).

  21. 21.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Preprint at https://arxiv.org/abs/1706.06983 (2017).

  22. 22.

    Kriegner, D. et al. Nat. Commun. 7, 11623 (2016).

  23. 23.

    Borders, W. A. et al. Appl. Phys. Express 10, 013007 (2017).

  24. 24.

    Olejnik, K. et al. Preprint at https://arxiv.org/abs/1711.08444 (2017).

  25. 25.

    Garello, K. et al. Appl. Phys. Lett. 105, 212402 (2014).

  26. 26.

    Prenat, G. et al. IEEE Trans. Multi-Scale Comput. Sys 2, 49–60 (2016).

  27. 27.

    Roy, P., Otxoa, R. M. & Wunderlich, J. Phys. Rev. B 94, 014439 (2016).

  28. 28.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Nature 429, 850–853 (2004).

  29. 29.

    Manz, S. et al. Nat. Photon. 10, 653–656 (2016).

  30. 30.

    Baierl, S. et al. Nat. Photon. 10, 715–718 (2016).

  31. 31.

    Bossini, D. et al. Nat. Commun. 7, 10645 (2016).

  32. 32.

    Saidl, V. et al. Nat. Photon. 11, 91–97 (2017).

  33. 33.

    Kittel, C. Phys. Rev. 82, 565–565 (1951).

  34. 34.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).

  35. 35.

    Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).

  36. 36.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

  37. 37.

    Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).

  38. 38.

    Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep. 6, 24795 (2016).

  39. 39.

    Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).

  40. 40.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

  41. 41.

    Zhang, X., Ezawa, M. & Zhou, Y. Phys. Rev. B 94, 064406 (2016).

  42. 42.

    Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Nat. Phys. 12, 1100–1104 (2016).

  43. 43.

    Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Phys. Rev. Lett. 118, 106402 (2017).

  44. 44.

    Wang, Z. F. et al. Nat. Mater. 15, 968–973 (2016).

  45. 45.

    Yang, H. et al. New J. Phys. 19, 015008 (2017).

  46. 46.

    Chen, H., Niu, Q. & MacDonald, A. H. Phys. Rev. Lett. 112, 017205 (2014).

  47. 47.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Nature 527, 212–216 (2015).

  48. 48.

    Sürgers, C., Fischer, G., Winkel, P. & Löhneysen, H. V. Nat. Commun. 5, 3400 (2014).

  49. 49.

    Železný, J., Zhang, Y., Felser, C. & Yan, B. Phys. Rev. Lett. 119, 187204 (2017).

  50. 50.

    Park, B. G. et al. Nat. Mater. 10, 347–351 (2011).

Download references

Acknowledgements

The authors acknowledge the EU FET Open RIA Grant No. 766566, the Alexander von Humboldt Foundation, the Transregional Collaborative Research Center (SFB/TRR) No. 173 SPIN+X, the Grant Agency of the Czech Republic Grant No. 14-37427G, the Ministry of Education of the Czech Republic Grant Nos LM2015087 and LNSM-LNSpin, the ERC Synergy Grant No. 610115, and the King Abdullah University of Science and Technology Grant No. OSR-2015-CRG4-2626.

Author information

Correspondence to T. Jungwirth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jungwirth, T., Sinova, J., Manchon, A. et al. The multiple directions of antiferromagnetic spintronics. Nature Phys 14, 200–203 (2018). https://doi.org/10.1038/s41567-018-0063-6

Download citation

Further reading