Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The multiple directions of antiferromagnetic spintronics

New developments in spintronics based on antiferromagnetic materials show promise for improved fundamental understanding and applications in technology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental antiferromagnetic memory device.

adapted from ref. 15, AIP (a); ref. 19, Macmillan Publishers Ltd (b); and ref. 11, AAAS (c)

Fig. 2: Antiferromagnetic anomalous Hall effect.

adapted from ref. 47, Macmillan Publishers Ltd

References

  1. Chappert, C., Fert, A. & Van Dau, F. N. Nat. Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  2. Brataas, A., Kent, A. D. & Ohno, H. Nat. Mater. 11, 372–381 (2012).

    Article  ADS  Google Scholar 

  3. Kent, A. D. & Worledge, D. C. Nat. Nanotech. 10, 187–191 (2015).

    Article  ADS  Google Scholar 

  4. Waldrop, M. M. Nature 530, 144–147 (2016).

    Article  ADS  Google Scholar 

  5. MacDonald, A. H. & Tsoi, M. Philos. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  ADS  Google Scholar 

  6. Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17–35 (2014).

    Article  ADS  Google Scholar 

  7. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Nat. Nanotech. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  8. Baltz, V. et al. Preprint at https://arxiv.org/abs/1606.04284 (2016).

  9. Wolf, S. A. et al. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  10. Néel, L. in Nobel Lectures, Physics 1963–1970 318–341 (Elsevier, Amsterdam, 1972).

  11. Wadley, P. et al. Science 351, 587–591 (2016).

    Article  ADS  Google Scholar 

  12. Marrows, C. Science 351, 558–559 (2016).

    Article  ADS  Google Scholar 

  13. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  14. Pulizzi, F. Nat. Mater. 11, 367 (2012).

    Article  ADS  Google Scholar 

  15. Sinova, J. & Jungwirth, T. Phys. Today 70, 38–42 (July, 2017).

    Article  Google Scholar 

  16. Miron, I. M. et al. Nature 476, 189–193 (2011).

    Article  ADS  Google Scholar 

  17. Liu, L. et al. Science 336, 555–558 (2012).

    Article  ADS  Google Scholar 

  18. Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).

    Article  ADS  Google Scholar 

  19. Olejník, K. et al. Nat. Commun. 8, 15434 (2017).

    Article  ADS  Google Scholar 

  20. Bodnar, S. Yu. et al. Nat. Commun. 9, 348 (2018).

    Article  ADS  Google Scholar 

  21. Meinert, M., Graulich, D. & Matalla-Wagner, T. Preprint at https://arxiv.org/abs/1706.06983 (2017).

  22. Kriegner, D. et al. Nat. Commun. 7, 11623 (2016).

    Article  ADS  Google Scholar 

  23. Borders, W. A. et al. Appl. Phys. Express 10, 013007 (2017).

    Article  ADS  Google Scholar 

  24. Olejnik, K. et al. Preprint at https://arxiv.org/abs/1711.08444 (2017).

  25. Garello, K. et al. Appl. Phys. Lett. 105, 212402 (2014).

    Article  ADS  Google Scholar 

  26. Prenat, G. et al. IEEE Trans. Multi-Scale Comput. Sys 2, 49–60 (2016).

    Article  Google Scholar 

  27. Roy, P., Otxoa, R. M. & Wunderlich, J. Phys. Rev. B 94, 014439 (2016).

    Article  ADS  Google Scholar 

  28. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Nature 429, 850–853 (2004).

    Article  ADS  Google Scholar 

  29. Manz, S. et al. Nat. Photon. 10, 653–656 (2016).

    Article  ADS  Google Scholar 

  30. Baierl, S. et al. Nat. Photon. 10, 715–718 (2016).

    Article  ADS  Google Scholar 

  31. Bossini, D. et al. Nat. Commun. 7, 10645 (2016).

    Article  ADS  Google Scholar 

  32. Saidl, V. et al. Nat. Photon. 11, 91–97 (2017).

    Article  ADS  Google Scholar 

  33. Kittel, C. Phys. Rev. 82, 565–565 (1951).

    Article  ADS  Google Scholar 

  34. Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).

    Article  ADS  Google Scholar 

  35. Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).

    Article  ADS  Google Scholar 

  36. Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

    Article  ADS  Google Scholar 

  37. Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).

    Article  ADS  Google Scholar 

  38. Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep. 6, 24795 (2016).

    Article  ADS  Google Scholar 

  39. Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).

    Article  ADS  Google Scholar 

  40. Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

    Article  ADS  Google Scholar 

  41. Zhang, X., Ezawa, M. & Zhou, Y. Phys. Rev. B 94, 064406 (2016).

    Article  ADS  Google Scholar 

  42. Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Nat. Phys. 12, 1100–1104 (2016).

    Article  Google Scholar 

  43. Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Phys. Rev. Lett. 118, 106402 (2017).

    Article  ADS  Google Scholar 

  44. Wang, Z. F. et al. Nat. Mater. 15, 968–973 (2016).

    Article  ADS  Google Scholar 

  45. Yang, H. et al. New J. Phys. 19, 015008 (2017).

    Article  ADS  Google Scholar 

  46. Chen, H., Niu, Q. & MacDonald, A. H. Phys. Rev. Lett. 112, 017205 (2014).

    Article  ADS  Google Scholar 

  47. Nakatsuji, S., Kiyohara, N. & Higo, T. Nature 527, 212–216 (2015).

    Article  ADS  Google Scholar 

  48. Sürgers, C., Fischer, G., Winkel, P. & Löhneysen, H. V. Nat. Commun. 5, 3400 (2014).

    Article  Google Scholar 

  49. Železný, J., Zhang, Y., Felser, C. & Yan, B. Phys. Rev. Lett. 119, 187204 (2017).

    Article  ADS  Google Scholar 

  50. Park, B. G. et al. Nat. Mater. 10, 347–351 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the EU FET Open RIA Grant No. 766566, the Alexander von Humboldt Foundation, the Transregional Collaborative Research Center (SFB/TRR) No. 173 SPIN+X, the Grant Agency of the Czech Republic Grant No. 14-37427G, the Ministry of Education of the Czech Republic Grant Nos LM2015087 and LNSM-LNSpin, the ERC Synergy Grant No. 610115, and the King Abdullah University of Science and Technology Grant No. OSR-2015-CRG4-2626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jungwirth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungwirth, T., Sinova, J., Manchon, A. et al. The multiple directions of antiferromagnetic spintronics. Nature Phys 14, 200–203 (2018). https://doi.org/10.1038/s41567-018-0063-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0063-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing