Spin transport and spin torque in antiferromagnetic devices

A Publisher Correction to this article was published on 18 December 2018

This article has been updated

Abstract

Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the various concepts proposed for the electrical detection and manipulation of antiferromagnetic order.
Fig. 2: AMR and ISGE spin–orbit torque in antiferromagnets.
Fig. 3: Demonstration of microelectronic compatibility of the CuMnAs memory cell.
Fig. 4 : The SHE and the SHE spin–orbit torque in antiferromagnets.

Change history

  • 18 December 2018

    In the version of this Review Article originally published, the affiliations of the authors J. Železný, P. Wadley and K. Olejník were incorrect and should have read: “J. Železný1,2, P. Wadley3, K. Olejník2. 1Max Planck Institute for Chemical Physics of Solids, Dresden, Germany. 2Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic. 3School of Physics and Astronomy, University of Nottingham, Nottingham, UK.” These have now been corrected in the online versions.

References

  1. 1.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    ADS  Google Scholar 

  2. 2.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Google Scholar 

  3. 3.

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    ADS  Google Scholar 

  4. 4.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Google Scholar 

  5. 5.

    Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    ADS  Google Scholar 

  6. 6.

    Gomonay, H. V., Kunitsyn, R. V. & Loktev, V. M. Symmetry and the macroscopic dynamics of antiferromagnetic materials in the presence of spin-polarized current. Phys. Rev. B 85, 134446 (2012).

    ADS  Google Scholar 

  7. 7.

    Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    ADS  Google Scholar 

  8. 8

    Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. https://doi.org/10.1038/s41567-018-0049-4 (2018).

  9. 9.

    Nogués, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    ADS  Google Scholar 

  10. 10.

    Wei, Z. et al. Changing exchange bias in spin valves with an electric current. Phys. Rev. Lett. 98, 116603 (2007).

    ADS  Google Scholar 

  11. 11.

    Urazhdin, S. & Anthony, N. Effect of polarized current on the magnetic state of an antiferromagnet. Phys. Rev. Lett. 99, 046602 (2007).

    ADS  Google Scholar 

  12. 12.

    Wei, Z., Basset, J., Sharma, A., Bass, J. & Tsoi, M. Spin-transfer interactions in exchange-biased spin valves. J. Appl. Phys. 105, 07D108 (2009).

    Google Scholar 

  13. 13.

    Tang, X. L., Zhang, H. W., Su, H., Zhong, Z. Y. & Jing, Y. L. Changing and reversing the exchange bias in a current-in-plane spin valve by means of an electric current. Appl. Phys. Lett. 91, 122504 (2007).

    ADS  Google Scholar 

  14. 14.

    Dai, N. V. et al. Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer. Phys. Rev. B 77, 132406 (2008).

    ADS  Google Scholar 

  15. 15.

    Tang, X., Su, H., Zhang, H. W., Jing, Y. L. & Zhong, Z. Y. Tuning the direction of exchange bias in ferromagnetic/antiferromagnetic bilayer by angular-dependent spin-polarized current. J. Appl. Phys. 112, 073916 (2012).

    ADS  Google Scholar 

  16. 16.

    Daughton, J. Magnetoresistive memory technology. Thin Solid Films 216, 162–168 (1992).

    ADS  Google Scholar 

  17. 17.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    ADS  Google Scholar 

  18. 18.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    ADS  Google Scholar 

  19. 19.

    Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671 (2014).

    Google Scholar 

  20. 20.

    Zhang, X. & Zou, L. K. Planar Hall effect in Y3Fe5O12/IrMn films. Appl. Phys. Lett. 105, 262401 (2014).

    ADS  Google Scholar 

  21. 21.

    Wong, A. T. et al. Strain driven anisotropic magnetoresistance in antiferromagnetic La 0.4Sr0.6MnO3. Appl. Phys. Lett. 105, 052401 (2014).

    ADS  Google Scholar 

  22. 22.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    ADS  Google Scholar 

  23. 23.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  Google Scholar 

  24. 24.

    Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    ADS  Google Scholar 

  25. 25.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Google Scholar 

  26. 26.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  Google Scholar 

  27. 27.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    ADS  Google Scholar 

  28. 28.

    Ralph, D. Spintronics research at Cornell. UCSB http://online.kitp.ucsb.edu/online/spintronics13/ralph/ (2013).

  29. 29.

    Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    ADS  Google Scholar 

  30. 30.

    Petti, D. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).

    ADS  Google Scholar 

  31. 31.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Google Scholar 

  32. 32.

    Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    ADS  Google Scholar 

  33. 33.

    Kato, Y., Myers, R., Gossard, A. & Awschalom, D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    ADS  Google Scholar 

  34. 34.

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    ADS  Google Scholar 

  35. 35.

    Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    ADS  Google Scholar 

  36. 36.

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    ADS  Google Scholar 

  37. 37.

    Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

    ADS  Google Scholar 

  38. 38.

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Google Scholar 

  39. 39.

    Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).

    ADS  Google Scholar 

  40. 40.

    Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

    Google Scholar 

  41. 41.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    ADS  Google Scholar 

  42. 42.

    Železný, J. et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B 95, 014403 (2017).

    ADS  Google Scholar 

  43. 43.

    Saidaoui, H. B. M. & Manchon, A. Spin orbit torque in disordered antiferromagnets. Preprint at http://arXiv.org/abs/1606.04261 (2016).

  44. 44.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    ADS  Google Scholar 

  45. 45.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018)

  46. 46.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. Preprint at http://arXiv.org/abs/1706.06983 (2017).

  47. 47.

    Moriyama, T. et al. Sequential write-read operations in FeRh antiferromagnetic memory. Appl. Phys. Lett. 107, 122403 (2015).

    ADS  Google Scholar 

  48. 48.

    Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    ADS  Google Scholar 

  49. 49.

    Olejník, K. et al. THz electrical writing speed in an antiferromagnetic. Preprint at http://arXiv.org/abs/1711.08444 (2017).

  50. 50.

    Bedau, D. et al. Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).

    ADS  Google Scholar 

  51. 51.

    Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    ADS  Google Scholar 

  52. 52.

    Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    ADS  Google Scholar 

  53. 53.

    Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    ADS  Google Scholar 

  54. 54.

    Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

    ADS  Google Scholar 

  55. 55.

    Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

    ADS  Google Scholar 

  56. 56.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  Google Scholar 

  57. 57.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  Google Scholar 

  58. 58.

    Prenat, G. et al. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing. IEEE Trans. Multi-Scale Computing Systems 2, 49–60 (2016).

    Google Scholar 

  59. 59.

    Reichlová, H. et al. Current induced torques in structures with ultra-thin IrMn antiferromagnet. Phys. Rev. B 92, 165424 (2015).

    ADS  Google Scholar 

  60. 60.

    Moriyama, T., Oda, K. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Preprint at http://arXiv.org/abs/1708.07682 (2017).

  61. 61.

    Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    ADS  Google Scholar 

  62. 62.

    Mendes, J. B. S. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80. Phys. Rev. B 89, 140406 (2014).

    ADS  Google Scholar 

  63. 63.

    Qu, D., Huang, S. Y. & Chien, C. L. Inverse spin Hall effect in Cr: independence of antiferromagnetic ordering. Phys. Rev. B 92, 020418 (2015).

    ADS  Google Scholar 

  64. 64.

    Zhang, W. et al. All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92, 144405 (2015).

    ADS  Google Scholar 

  65. 65.

    Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    ADS  Google Scholar 

  66. 66.

    Tshitoyan, V. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).

    ADS  Google Scholar 

  67. 67.

    Fukami, S., Zhang, C., Duttagupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–542 (2016).

    ADS  Google Scholar 

  68. 68.

    Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotech. 11, 878–884 (2016).

    ADS  Google Scholar 

  69. 69.

    van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Google Scholar 

  70. 70.

    Wu, D. et al. Spin-orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer. Appl. Phys. Lett. 109, 222401 (2016).

    ADS  Google Scholar 

  71. 71.

    Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405 (2016).

    ADS  Google Scholar 

  72. 72.

    Kurenkov, A., Zhang, C., DuttaGupta, S., Fukami, S. & Ohno, H. Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Appl. Phys. Lett. 110, 092410 (2017).

    ADS  Google Scholar 

  73. 73.

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    ADS  Google Scholar 

  74. 74.

    Borders, W. A. et al. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10, 013007 (2017).

    ADS  Google Scholar 

  75. 75.

    Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–96 (2017).

    ADS  Google Scholar 

  76. 76

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. https://doi.org/10.1038/s41567-018-0051-x (2018).

  77. 77.

    Baibich, M. N. et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    ADS  Google Scholar 

  78. 78.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    ADS  Google Scholar 

  79. 79.

    Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    ADS  Google Scholar 

  80. 80.

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    ADS  Google Scholar 

  81. 81.

    Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    ADS  Google Scholar 

  82. 82.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    ADS  Google Scholar 

  83. 83.

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    ADS  Google Scholar 

  84. 84.

    Núñez, A. S., Duine, R. A., Haney, P. M. & MacDonald, A. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    ADS  Google Scholar 

  85. 85.

    Haney, P. M. et al. Ab initio giant magnetoresistance and current-induced torques in Cr/Au/Cr multilayers. Phys. Rev. B 75, 174428 (2007).

    ADS  Google Scholar 

  86. 86.

    Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).

    ADS  Google Scholar 

  87. 87.

    Prakhya, K., Popescu, A. & Haney, P. M. Current-induced torques between ferromagnets and compensated antiferromagnets: symmetry and phase coherence effects. Phys. Rev. B 89, 054421 (2014).

    ADS  Google Scholar 

  88. 88.

    Merodio, P., Kalitsov, A., Béa, H., Baltz, V. & Chshiev, M. Spin-dependent transport in antiferromagnetic tunnel junctions. Appl. Phys. Lett. 105, 122403 (2014).

    ADS  Google Scholar 

  89. 89.

    Stamenova, M., Mohebbi, R., Seyed-Yazdi, J., Rungger, I. & Sanvito, S. First-principles spin-transfer torque in CuMnAs|GaP|CuMnAs junctions. Phys. Rev. B 95, 060403 (2017).

    ADS  Google Scholar 

  90. 90.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    ADS  Google Scholar 

  91. 91.

    Haney, P. M., Duine, R. A., Núñez, A. S. & MacDonald, A. H. Current-induced torques in magnetic metals: beyond spin-transfer. J. Magn. Magn. Mater. 320, 1300–1311 (2008).

    ADS  Google Scholar 

  92. 92.

    Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).

    ADS  Google Scholar 

  93. 93.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    ADS  Google Scholar 

  94. 94.

    Yamane, Y., Ieda, J. & Sinova, J. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).

    ADS  Google Scholar 

  95. 95.

    Duine, R. A., Haney, P. M., Núñez, A. S. & MacDonald, A. Inelastic scattering in ferromagnetic and antiferromagnetic spin valves. Phys. Rev. B 75, 014433 (2007).

    ADS  Google Scholar 

  96. 96.

    Saidaoui, H. B. M., Manchon, A. & Waintal, X. Spin transfer torque in antiferromagnetic spin valves: from clean to disordered regimes. Phys. Rev. B 89, 174430 (2014).

    ADS  Google Scholar 

  97. 97.

    Manchon, A. Spin diffusion and torques in disordered antiferromagnets. J. Phys. Condens. Matter 29, 104002 (2017).

    ADS  Google Scholar 

  98. 98.

    Saidaoui, H., Manchon, A. & Waintal, X. Robust spin transfer torque in antiferromagnetic tunnel junctions. Phys. Rev. B 95, 134424 (2017).

    ADS  Google Scholar 

  99. 99.

    Wang, L., Wang, S. G., Rizwan, S., Qin, Q. H. & Han, X. F. Magnetoresistance effect in antiferromagnet/nonmagnet/antiferromagnet multilayers. Appl. Phys. Lett. 95, 152512 (2009).

    ADS  Google Scholar 

  100. 100.

    Wei, Z., Sharma, A., Bass, J. & Tsoi, M. Point-contact search for antiferromagnetic giant magnetoresistance. J. Appl. Phys. 105, 07D113 (2009).

    Google Scholar 

  101. 101.

    Wang, Y. et al. Anti-ferromagnet controlled tunneling magnetoresistance. Adv. Funct. Mater. 24, 6806–6810 (2014).

    Google Scholar 

  102. 102.

    Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in non-collinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from EU FET Open RIA grant no. 766566. The contributions from A.H. preparing this manuscript were supported by the Department of Energy, Office of Science, Materials Science and Engineering Division. J.Ž. acknowledges support from the Institute of Physics of the Czech Academy of Sciences and the Max Planck Society through the Max Planck Partner Group programme. P.W. acknowledges support from Engineering and Physical Sciences Research Council grant EP/P019749/1 and from the Royal Society through a University Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Železný.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Železný, J., Wadley, P., Olejník, K. et al. Spin transport and spin torque in antiferromagnetic devices. Nature Phys 14, 220–228 (2018). https://doi.org/10.1038/s41567-018-0062-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing